Disentangling Carrier-Transport and Interfacial Carrier-Recombination by Mitigating Na Interstitials for 11.9% Efficient Cd-Free Cu2ZnSnS4 Solar Cells

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2025-04-09 DOI:10.1002/smll.202501905
Xiaojie Yuan, Jianjun Li, Lishuang Zhang, Jialiang Huang, Jialin Cong, Karen Privat, Zhou Xu, Yin Yao, Guojun He, Ao Wang, Xin Cui, Robert J. Patterson, Kaiwen Sun, Martin A. Green, Xiaojing Hao
{"title":"Disentangling Carrier-Transport and Interfacial Carrier-Recombination by Mitigating Na Interstitials for 11.9% Efficient Cd-Free Cu2ZnSnS4 Solar Cells","authors":"Xiaojie Yuan,&nbsp;Jianjun Li,&nbsp;Lishuang Zhang,&nbsp;Jialiang Huang,&nbsp;Jialin Cong,&nbsp;Karen Privat,&nbsp;Zhou Xu,&nbsp;Yin Yao,&nbsp;Guojun He,&nbsp;Ao Wang,&nbsp;Xin Cui,&nbsp;Robert J. Patterson,&nbsp;Kaiwen Sun,&nbsp;Martin A. Green,&nbsp;Xiaojing Hao","doi":"10.1002/smll.202501905","DOIUrl":null,"url":null,"abstract":"<p>High-performance photovoltaic (PV) devices require optimal carrier-transport properties and minimized carrier recombination. However, these two factors are found entangled in Cu<sub>2</sub>ZnSnS<sub>4</sub> (CZTS) solar cells due to the unintentionally introduced Na interstitial defects. The Na interstitials behave as shallow donors which can charge-passivate the acceptor-like interfacial defects but reduce the hole density and electron mobility—suppressing interfacial recombination whilst hampering carrier transport in the bulk of CZTS. Herein, we demonstrate that Na interstitials can be reduced by a device annealing process at ≈220 °C for 5 min in open air based on the strong interaction between Na and O, thus successfully disentangling the carrier-transport and junction interface carrier-recombination, leading to increased hole density from 1.3 × 10<sup>15</sup> cm<sup>−3</sup> to 9.8 × 10<sup>15</sup> cm<sup>−3</sup> and electron diffusion length from 0.25 to 0.35 µm. This strategy not only yields a champion 11.9% efficiency of Cd-free CZTS solar cells but also advances the understanding of carrier transport in kesterite and other emerging PV materials.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 19","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202501905","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202501905","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-performance photovoltaic (PV) devices require optimal carrier-transport properties and minimized carrier recombination. However, these two factors are found entangled in Cu2ZnSnS4 (CZTS) solar cells due to the unintentionally introduced Na interstitial defects. The Na interstitials behave as shallow donors which can charge-passivate the acceptor-like interfacial defects but reduce the hole density and electron mobility—suppressing interfacial recombination whilst hampering carrier transport in the bulk of CZTS. Herein, we demonstrate that Na interstitials can be reduced by a device annealing process at ≈220 °C for 5 min in open air based on the strong interaction between Na and O, thus successfully disentangling the carrier-transport and junction interface carrier-recombination, leading to increased hole density from 1.3 × 1015 cm−3 to 9.8 × 1015 cm−3 and electron diffusion length from 0.25 to 0.35 µm. This strategy not only yields a champion 11.9% efficiency of Cd-free CZTS solar cells but also advances the understanding of carrier transport in kesterite and other emerging PV materials.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过减少 Na 间质来析出载流子传输和界面载流子重组,从而实现 11.9% 高效无镉 Cu2ZnSnS4 太阳能电池
高性能光伏(PV)器件需要最佳的载流子传输特性和最小化载流子复合。然而,在Cu2ZnSnS4 (CZTS)太阳能电池中,由于无意中引入的Na间隙缺陷,这两个因素被发现纠缠在一起。在大量的CZTS中,Na间隙作为浅层供体,可以使类受体界面缺陷带电钝化,但降低了空穴密度和电子迁移率,抑制了界面重组,同时阻碍了载流子的输运。在此,我们证明了基于Na和O之间的强相互作用,在室外≈220°C下进行5分钟的器件退火工艺可以减少Na间隙,从而成功地解除载流子-输运和结界面载流子-重组的纠缠,导致空穴密度从1.3 × 1015 cm - 3增加到9.8 × 1015 cm - 3,电子扩散长度从0.25到0.35µm。这一策略不仅产生了11.9%的无cd CZTS太阳能电池效率,而且还促进了对kesterite和其他新兴光伏材料中载流子输运的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Multiscale Synergistic Design of High-Performance Electrocatalysts for Alkaline Hydrogen Evolution. ROS-Responsive Hybrid Nanoparticles Enable Dual-Target Neurovascular Repair via Blood-Brain Barrier-on-Chip Validation. Transforming Fragile Hydrogel Chips Into Standardized Cartridges via Contact Line Pinning for Robust Microfluidics. Issue Information Magnetically Reconfigurable Wettability-Adhesion Coupling for Adaptive Lubrication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1