Xiaofei Xin, Di Wu, Pengbo Zhao, Yuanyuan Li, Huanyu Qin, Jinyu Dai, Yong Zhou, Yifu Lyu, Yang Yang, Ying Zhu, Hang Shi, Lei Yang, Lifang Yin
{"title":"Catch-to-Amplify Nanoparticles with Bacteria Surface for Sequential Mucosal Immune Activation for Acute Myeloid Leukemia Therapy","authors":"Xiaofei Xin, Di Wu, Pengbo Zhao, Yuanyuan Li, Huanyu Qin, Jinyu Dai, Yong Zhou, Yifu Lyu, Yang Yang, Ying Zhu, Hang Shi, Lei Yang, Lifang Yin","doi":"10.1021/acsnano.4c08515","DOIUrl":null,"url":null,"abstract":"Mucosal-mediated immune deficiency is associated with immune evasion and poor clinical outcomes in acute myeloid leukemia (AML). Here, we describe the elicitation of mucosal and systemic immune response by oral delivery of MDP-modified PEG-lipid (MDP-PEG-DSPE) and polylactic acid–polyhistidine (PLA–PHis) copolymer constructed nanosystem (mPOD) into Peyer’s patches. To protect against gastrointestinal degradation, enteric-soluble capsules are utilized for encapsulating mPOD to promote penetration across intestinal mucus and engender robust Peyer’s patch targeting initiated by MDP-PEG-DSPE. Compared with intravenous and intramuscular administration, the oral delivery of MDP-PEG-DSPE and 5′-triphosphate-modified RNA (ppp-RNA) into gut-associated lymphoid tissues reinforces dendritic cell maturation and migration, amplifies mucosal immune response, and boosts the production of secretory immunoglobulin A via retinoic acid-inducible gene I/nucleotide-binding oligomerization domain 2 (RIG-I/NOD2) signaling activation. In the AML murine model, the provoked mucosal immunity positively regulates the systemic cytotoxic immune reactions, which, in turn, eradicate disseminated malignant leukemic cells and provide defense against leukemia attacks.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"183 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c08515","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mucosal-mediated immune deficiency is associated with immune evasion and poor clinical outcomes in acute myeloid leukemia (AML). Here, we describe the elicitation of mucosal and systemic immune response by oral delivery of MDP-modified PEG-lipid (MDP-PEG-DSPE) and polylactic acid–polyhistidine (PLA–PHis) copolymer constructed nanosystem (mPOD) into Peyer’s patches. To protect against gastrointestinal degradation, enteric-soluble capsules are utilized for encapsulating mPOD to promote penetration across intestinal mucus and engender robust Peyer’s patch targeting initiated by MDP-PEG-DSPE. Compared with intravenous and intramuscular administration, the oral delivery of MDP-PEG-DSPE and 5′-triphosphate-modified RNA (ppp-RNA) into gut-associated lymphoid tissues reinforces dendritic cell maturation and migration, amplifies mucosal immune response, and boosts the production of secretory immunoglobulin A via retinoic acid-inducible gene I/nucleotide-binding oligomerization domain 2 (RIG-I/NOD2) signaling activation. In the AML murine model, the provoked mucosal immunity positively regulates the systemic cytotoxic immune reactions, which, in turn, eradicate disseminated malignant leukemic cells and provide defense against leukemia attacks.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.