Recovery of quinoa protein via ultrasound-assisted extraction and nanoparticle-enhanced foam fractionation: stabilizer preparation, mechanistic insights and process optimization

IF 9 1区 工程技术 Q1 ENGINEERING, CHEMICAL Separation and Purification Technology Pub Date : 2025-04-08 DOI:10.1016/j.seppur.2025.132935
Nan Hu , Jiaqi Li , Yazhu Pei , Yaoxi Chen , Yingjie Du , Linlin Ding , Yanfei Li
{"title":"Recovery of quinoa protein via ultrasound-assisted extraction and nanoparticle-enhanced foam fractionation: stabilizer preparation, mechanistic insights and process optimization","authors":"Nan Hu ,&nbsp;Jiaqi Li ,&nbsp;Yazhu Pei ,&nbsp;Yaoxi Chen ,&nbsp;Yingjie Du ,&nbsp;Linlin Ding ,&nbsp;Yanfei Li","doi":"10.1016/j.seppur.2025.132935","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an innovative, sustainable strategy for high-efficiency recovery of quinoa protein through synergistic integration of ultrasonic extraction and foam fractionation stabilized by sodium caprate-functionalized cellulose nanoparticles (SC-CNPs). The surface engineering of CNPs via SC modification was systematically characterized using SEM-EDX, FTIR, XPS, and zeta potential analysis, revealing successful grafting of aliphatic chains that transformed CNPs into amphiphilic stabilizers with optimal interfacial activity (contact angle: 79.7°). This modification extended foam half-life by 26.7-fold compared to unmodified CNPs, enabling robust foam stability for protein recovery. Through Box-Behnken design optimization (150 mg/L SC-CNPs, pH 4.8, 530 mL/min gas flow), the process achieved exceptional recovery efficiency (93.1 %) and enrichment ratio (15.9). Compositional profiling confirmed the preservation of native quinoa protein structures, with better functional properties. Nutritionally, the protein met FAO/WHO essential amino acid requirements, validating its suitability for food fortification, cosmetic emulsions, and pharmaceutical encapsulation. By bridging colloidal science, green chemistry, and circular bioeconomy principles, this work establishes nanoparticle-enhanced foam fractionation as a paradigm-shifting technology for sustainable valorization of plant proteins, offering transformative solutions for global food security and eco-friendly biorefining.</div></div>","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"367 ","pages":"Article 132935"},"PeriodicalIF":9.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383586625015321","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an innovative, sustainable strategy for high-efficiency recovery of quinoa protein through synergistic integration of ultrasonic extraction and foam fractionation stabilized by sodium caprate-functionalized cellulose nanoparticles (SC-CNPs). The surface engineering of CNPs via SC modification was systematically characterized using SEM-EDX, FTIR, XPS, and zeta potential analysis, revealing successful grafting of aliphatic chains that transformed CNPs into amphiphilic stabilizers with optimal interfacial activity (contact angle: 79.7°). This modification extended foam half-life by 26.7-fold compared to unmodified CNPs, enabling robust foam stability for protein recovery. Through Box-Behnken design optimization (150 mg/L SC-CNPs, pH 4.8, 530 mL/min gas flow), the process achieved exceptional recovery efficiency (93.1 %) and enrichment ratio (15.9). Compositional profiling confirmed the preservation of native quinoa protein structures, with better functional properties. Nutritionally, the protein met FAO/WHO essential amino acid requirements, validating its suitability for food fortification, cosmetic emulsions, and pharmaceutical encapsulation. By bridging colloidal science, green chemistry, and circular bioeconomy principles, this work establishes nanoparticle-enhanced foam fractionation as a paradigm-shifting technology for sustainable valorization of plant proteins, offering transformative solutions for global food security and eco-friendly biorefining.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超声辅助提取和纳米颗粒增强泡沫分离回收藜麦蛋白:稳定剂制备、机理研究和工艺优化
本研究提出了一种创新的、可持续的藜麦蛋白回收策略,该策略通过超声提取和泡沫分离的协同整合,由醋酸钠功能化纤维素纳米颗粒(SC-CNPs)稳定。利用SEM-EDX、FTIR、XPS和zeta电位分析对SC修饰CNPs的表面工程进行了系统表征,揭示了成功接枝脂肪链将CNPs转化为具有最佳界面活性(接触角为79.7°)的两亲性稳定剂。与未修饰的CNPs相比,这种修饰延长了泡沫的半衰期26.7倍,使蛋白质恢复具有强大的泡沫稳定性。通过Box-Behnken设计优化(150 mg/L SC-CNPs, pH 4.8, 530 mL/min气流量),该工艺获得了优异的回收率(93.1 %)和富集比(15.9)。成分分析证实了天然藜麦蛋白结构的保存,具有较好的功能特性。在营养方面,该蛋白质符合粮农组织/世卫组织对必需氨基酸的要求,验证了其用于食品强化、化妆品乳液和药物封装的适用性。通过将胶体科学、绿色化学和循环生物经济原理结合起来,本研究将纳米颗粒增强泡沫分离技术作为一种范式转换技术,用于植物蛋白的可持续增值,为全球粮食安全和生态友好型生物精炼提供变革性解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
期刊最新文献
Trimetallic PCN-250 MOFs for synergistic radical-mediated photocatalytic degradation of microplastics Al(NO3)3·9H2O solution: a green Brønsted solvent for the recycling of NdFeB magnet waste Magnetic porous cu-MOF/Enteromorpha biochar complexes for efficient chromium(VI) removal: Synergistic adsorption-reduction mechanisms Ce-doped MOF-801 composite sponge for high-efficiency removal of F− from wastewater: Experimental investigation and performance enhancement mechanism A recoverable waste-based g-C3N4 catalyst for efficient CO2 photoreduction: Characterization and performance in generating methanol and methane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1