MolRWKV: Conditional Molecular Generation Model Using Local Enhancement and Graph Enhancement

IF 4.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Computational Chemistry Pub Date : 2025-04-10 DOI:10.1002/jcc.70100
Xihan Li, Kuanping Gong, Yongquan Jiang, Yan Yang, Tianrui Li
{"title":"MolRWKV: Conditional Molecular Generation Model Using Local Enhancement and Graph Enhancement","authors":"Xihan Li,&nbsp;Kuanping Gong,&nbsp;Yongquan Jiang,&nbsp;Yan Yang,&nbsp;Tianrui Li","doi":"10.1002/jcc.70100","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Conditional-based molecule generation techniques help to provide molecules with specific conditions for practical applications. As the SMILES string is represented as a sequence of strings, it can be processed using a language model that gradually generates its complete sequence by employing a loop to generate the next token. The efficient parallelism and efficient reasoning ability of RWKV indicate its potential for success in the field of natural language processing. Therefore, we proposed the MolRWKV de novo conditional molecule generation model, which integrates CNN and GCN based on the RWKV model, combining the ability of CNN to extract local information of SMILES sequences and the ability of GCN to obtain topological structure information of molecular graphs. Experiments show that MolRWKV can achieve comparable results to existing models in both unconditional and conditional generation, improve the accuracy of conditional generation, generate diverse molecules while retaining scaffold information, and generate molecules with affinity for specific target proteins.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 10","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70100","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Conditional-based molecule generation techniques help to provide molecules with specific conditions for practical applications. As the SMILES string is represented as a sequence of strings, it can be processed using a language model that gradually generates its complete sequence by employing a loop to generate the next token. The efficient parallelism and efficient reasoning ability of RWKV indicate its potential for success in the field of natural language processing. Therefore, we proposed the MolRWKV de novo conditional molecule generation model, which integrates CNN and GCN based on the RWKV model, combining the ability of CNN to extract local information of SMILES sequences and the ability of GCN to obtain topological structure information of molecular graphs. Experiments show that MolRWKV can achieve comparable results to existing models in both unconditional and conditional generation, improve the accuracy of conditional generation, generate diverse molecules while retaining scaffold information, and generate molecules with affinity for specific target proteins.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部增强和图增强的条件分子生成模型
基于条件的分子生成技术有助于为实际应用提供特定条件的分子。由于SMILES字符串表示为字符串序列,因此可以使用语言模型对其进行处理,该模型通过使用循环来生成下一个标记,从而逐渐生成完整的序列。RWKV的高效并行性和高效推理能力表明其在自然语言处理领域具有成功的潜力。因此,我们提出了基于RWKV模型的MolRWKV de novo条件分子生成模型,该模型融合了CNN和GCN,结合了CNN提取SMILES序列局部信息的能力和GCN获取分子图拓扑结构信息的能力。实验表明,MolRWKV在无条件生成和条件生成两方面都可以达到与现有模型相当的结果,提高了条件生成的准确性,在保留支架信息的同时生成多样化的分子,并生成对特定靶蛋白具有亲和力的分子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
期刊最新文献
Computational Characterization of the Energetics, Structure, and Spectroscopy of Biofuel Precursors: The Case of Furfural-Acetone-Furfural. Computational Insights Into All-Fused Ring Non-Fullerene Acceptors for Enhanced Stability and Performance. Unraveling the Novel Furan-Based π-Conjugated Systems: Insights From Optimally Tuned Long-Range Corrected DFT Functionals, PBC-DFT Methods, and Excited States Studies for Oxa[n]Helicenes. Direct and Superexchange Couplings for Electron Transfer in Donor-Bridge-Acceptor Systems. Accuracy and Scaling Factors of Non-Empirical Double-Hybrid Density Functionals for Harmonic and Fundamental Frequencies (And ZPVE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1