Green Synthesis and Characterization of ZnO Nanoparticles Using Crinum Asiaticum Leaf Extracts for Biomedical Applications

IF 3 4区 化学 Q2 CHEMISTRY, ANALYTICAL Luminescence Pub Date : 2025-04-10 DOI:10.1002/bio.70158
Alagan Sekar, Palaniyapillai JothiMurugan, Geetha Shanmugam, Bouzid Gassoumi, Mysoon M. Al-Ansari, P. Srinivasan, Sherlin Nivetha, Francisxavier Paularokiadoss, Sahbi Ayachi
{"title":"Green Synthesis and Characterization of ZnO Nanoparticles Using Crinum Asiaticum Leaf Extracts for Biomedical Applications","authors":"Alagan Sekar,&nbsp;Palaniyapillai JothiMurugan,&nbsp;Geetha Shanmugam,&nbsp;Bouzid Gassoumi,&nbsp;Mysoon M. Al-Ansari,&nbsp;P. Srinivasan,&nbsp;Sherlin Nivetha,&nbsp;Francisxavier Paularokiadoss,&nbsp;Sahbi Ayachi","doi":"10.1002/bio.70158","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Zinc oxide nanoparticles are increasingly recognized for their applications in optics, electronics, food packaging, and biomedical research. This study investigates the green synthesis of ZnONPs using leaf extracts from <i>Crinum asiaticum</i>, a tropical plant. The synthesized nanoparticles were characterized using UV–Vis spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy, and particle size analysis. The ZnONPs exhibited a strong UV–Vis absorption peak at 399 nm and a hexagonal wurtzite structure. Increasing the volume of plant extract enhanced crystallinity, as evidenced by higher peak intensities, narrower full width at half maximum, and well-defined diffraction peaks. FTIR analysis revealed functional groups in the plant extract interacting with ZnONPs, with higher extract volumes introducing additional functional groups that improved nanoparticle stability, size, and structural order. This study highlights the potential of <i>Crinum asiaticum</i> leaf extract as an eco-friendly and sustainable approach for ZnONP synthesis, underscoring the importance of extract volume optimization for tailoring nanoparticle properties.</p>\n </div>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"40 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Luminescence","FirstCategoryId":"92","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/bio.70158","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc oxide nanoparticles are increasingly recognized for their applications in optics, electronics, food packaging, and biomedical research. This study investigates the green synthesis of ZnONPs using leaf extracts from Crinum asiaticum, a tropical plant. The synthesized nanoparticles were characterized using UV–Vis spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy, and particle size analysis. The ZnONPs exhibited a strong UV–Vis absorption peak at 399 nm and a hexagonal wurtzite structure. Increasing the volume of plant extract enhanced crystallinity, as evidenced by higher peak intensities, narrower full width at half maximum, and well-defined diffraction peaks. FTIR analysis revealed functional groups in the plant extract interacting with ZnONPs, with higher extract volumes introducing additional functional groups that improved nanoparticle stability, size, and structural order. This study highlights the potential of Crinum asiaticum leaf extract as an eco-friendly and sustainable approach for ZnONP synthesis, underscoring the importance of extract volume optimization for tailoring nanoparticle properties.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物医学用途的亚洲红叶提取物绿色合成ZnO纳米粒子及其表征
氧化锌纳米颗粒在光学、电子、食品包装和生物医学研究中的应用越来越受到人们的认可。本研究研究了利用热带植物criinum asiaticum叶片提取物绿色合成ZnONPs的方法。利用紫外可见光谱、x射线衍射、傅里叶变换红外光谱、扫描电子显微镜、原子力显微镜和粒径分析对合成的纳米颗粒进行了表征。ZnONPs在399 nm处有很强的紫外-可见吸收峰,具有六方纤锌矿结构。增加植物提取物的体积可以增强结晶度,这可以从更高的峰强度、更窄的半最大值全宽度和清晰的衍射峰中得到证明。FTIR分析显示,植物提取物中的官能团与ZnONPs相互作用,随着提取量的增加,引入了额外的官能团,提高了纳米颗粒的稳定性、大小和结构秩序。本研究强调了亚洲蓟叶提取物作为一种环保和可持续的ZnONP合成方法的潜力,强调了优化提取物体积对定制纳米颗粒性质的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Luminescence
Luminescence 生物-生化与分子生物学
CiteScore
5.10
自引率
13.80%
发文量
248
审稿时长
3.5 months
期刊介绍: Luminescence provides a forum for the publication of original scientific papers, short communications, technical notes and reviews on fundamental and applied aspects of all forms of luminescence, including bioluminescence, chemiluminescence, electrochemiluminescence, sonoluminescence, triboluminescence, fluorescence, time-resolved fluorescence and phosphorescence. Luminescence publishes papers on assays and analytical methods, instrumentation, mechanistic and synthetic studies, basic biology and chemistry. Luminescence also publishes details of forthcoming meetings, information on new products, and book reviews. A special feature of the Journal is surveys of the recent literature on selected topics in luminescence.
期刊最新文献
Selective Ag+ Sensing and Cellular Imaging Based on Hydrophilic Modulated Peptide Probe. Structural, Spectroscopic, and Luminescent Properties of Dy3+-Doped Multicomponent-Based Borosilicate Glasses for White-Light Emission Applications. A Photoluminescent Polycarbazole–Polythiophene Nanosheets Bridging Biomolecular Sensing in Food Samples and Energy Storage Carboxylic Acid–Functionalized β-Ketoenamine Linked Porous Organic Polymer Based Fluorescent Immunoassay for Prostate Cancer Detection Novel Spectrofluorimetric Techniques for Cerebrolysin Quantification and First Derivative Synchronous Fluorescence Analysis of Cerebrolysin and Donepezil in Human Plasma and Dosage Forms With Content Uniformity and Comprehensive Green Analytical Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1