{"title":"Time-course transcriptome and chromatin accessibility analyses reveal the dynamic transcriptional regulation shaping spikelet hull size","authors":"Shaotong Chen, Fuquan Li, Weizhi Ouyang, Shuifu Chen, Sanyang Luo, Jianhong Liu, Gufeng Li, Zhansheng Lin, Yao-Guang Liu, Xianrong Xie","doi":"10.1111/tpj.70141","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The grains of rice (<i>Oryza sativa</i>) are enclosed by a spikelet hull comprising the lemma and palea. Development of the spikelet hull determines the storage capacity of the grain, thus affecting grain yield and quality. Although multiple signaling pathways controlling grain size have been identified, the transcriptional regulatory mechanisms underlying grain development remain limited. Here, we used RNA-seq and ATAC-seq to characterize the transcription and chromatin accessibility dynamics during the development of spikelet hulls. A time-course analysis showed that more than half of the genes were sequentially expressed during hull development and that the accessibility of most open chromatin regions (OCRs) changed moderately, although some regions positively or negatively affected the expression of their closest genes. We revealed a crucial role of GROWTH-REGULATING FACTORs in shaping grain size by influencing multiple metabolic and signaling pathways, and a coordinated transcriptional regulation in response to auxin and cytokinin signaling. We also demonstrated the function of SCL6-IIb, a member of the GRAS family transcription factors, in regulating grain size, with <i>SCL6-IIb</i> expression being activated by SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 18 (OsSPL18). When we edited the DNA sequences within OCRs upstream of the start codon of <i>BRASSINAZOLE-RESISTANT 1</i> (<i>BZR1</i>) and <i>SCL6-IIb</i>, we generated multiple mutant lines with longer grains. These findings offer a comprehensive overview of the <i>cis</i>-regulatory landscape involved in forming grain capacity and a valuable resource for exploring the regulatory network behind grain development.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"122 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70141","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The grains of rice (Oryza sativa) are enclosed by a spikelet hull comprising the lemma and palea. Development of the spikelet hull determines the storage capacity of the grain, thus affecting grain yield and quality. Although multiple signaling pathways controlling grain size have been identified, the transcriptional regulatory mechanisms underlying grain development remain limited. Here, we used RNA-seq and ATAC-seq to characterize the transcription and chromatin accessibility dynamics during the development of spikelet hulls. A time-course analysis showed that more than half of the genes were sequentially expressed during hull development and that the accessibility of most open chromatin regions (OCRs) changed moderately, although some regions positively or negatively affected the expression of their closest genes. We revealed a crucial role of GROWTH-REGULATING FACTORs in shaping grain size by influencing multiple metabolic and signaling pathways, and a coordinated transcriptional regulation in response to auxin and cytokinin signaling. We also demonstrated the function of SCL6-IIb, a member of the GRAS family transcription factors, in regulating grain size, with SCL6-IIb expression being activated by SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 18 (OsSPL18). When we edited the DNA sequences within OCRs upstream of the start codon of BRASSINAZOLE-RESISTANT 1 (BZR1) and SCL6-IIb, we generated multiple mutant lines with longer grains. These findings offer a comprehensive overview of the cis-regulatory landscape involved in forming grain capacity and a valuable resource for exploring the regulatory network behind grain development.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.