Marina Pfalz, Seïf-Eddine Naadja, Jacqui Anne Shykoff, Juergen Kroymann
{"title":"Ectopic Gene Conversion Causing Quantitative Trait Variation.","authors":"Marina Pfalz, Seïf-Eddine Naadja, Jacqui Anne Shykoff, Juergen Kroymann","doi":"10.1093/molbev/msaf086","DOIUrl":null,"url":null,"abstract":"<p><p>Why is there so much non-neutral genetic variation segregating in natural populations? We dissect function and evolution of a near-cryptic quantitative trait locus (QTL) for defense metabolites in Arabidopsis using the CRISPR/Cas9 system and nucleotide polymorphism patterns. The QTL is explained by genetic variation in a family of 4 tightly linked indole-glucosinolate O-methyltransferase genes. Some of this variation appears to be maintained by balancing selection, some appears to be generated by non-reciprocal transfer of sequence, also known as ectopic gene conversion (EGC), between functionally diverged gene copies. Here, we elucidate how EGC, as an inevitable consequence of gene duplication, could be a general mechanism for generating genetic variation for fitness traits.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042744/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msaf086","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Why is there so much non-neutral genetic variation segregating in natural populations? We dissect function and evolution of a near-cryptic quantitative trait locus (QTL) for defense metabolites in Arabidopsis using the CRISPR/Cas9 system and nucleotide polymorphism patterns. The QTL is explained by genetic variation in a family of 4 tightly linked indole-glucosinolate O-methyltransferase genes. Some of this variation appears to be maintained by balancing selection, some appears to be generated by non-reciprocal transfer of sequence, also known as ectopic gene conversion (EGC), between functionally diverged gene copies. Here, we elucidate how EGC, as an inevitable consequence of gene duplication, could be a general mechanism for generating genetic variation for fitness traits.
期刊介绍:
Molecular Biology and Evolution
Journal Overview:
Publishes research at the interface of molecular (including genomics) and evolutionary biology
Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic
Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research
Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.