How Does Alignment Error Affect Automated Pronunciation Scoring in Children's Speech?

Prad Kadambi, Tristan Mahr, Lucas Annear, Henry Nomeland, Julie Liss, Katherine Hustad, Visar Berisha
{"title":"How Does Alignment Error Affect Automated Pronunciation Scoring in Children's Speech?","authors":"Prad Kadambi, Tristan Mahr, Lucas Annear, Henry Nomeland, Julie Liss, Katherine Hustad, Visar Berisha","doi":"10.21437/interspeech.2024-2239","DOIUrl":null,"url":null,"abstract":"<p><p>Automated goodness of pronunciation scores measure deviation from typical adult speech by first phonetically segmenting speech using forced alignment and then computing phoneme likelihoods. Care must be taken to distinguish between the impact of alignment error (a spurious signal) and true acoustic deviation on the automated score. Using mixed effects modeling, we predict <math><mi>Δ</mi> <mi>P</mi> <mi>L</mi> <mi>L</mi> <mi>R</mi></math> , the difference between pronunciation scores computed using manual alignment ( <math><mi>P</mi> <mi>L</mi> <mi>L</mi> <msub><mrow><mi>R</mi></mrow> <mrow><mi>m</mi></mrow> </msub> </math> ) versus computed using automatic forced alignments ( <math><mi>P</mi> <mi>L</mi> <mi>L</mi> <msub><mrow><mi>R</mi></mrow> <mrow><mi>a</mi></mrow> </msub> </math> ). Pronunciation deviations and alignment error are both magnified in children's speech and may be influenced by factors such as phoneme position and phoneme type. Our methodology shows that alignment error has a moderate effect on <math><mi>Δ</mi> <mi>P</mi> <mi>L</mi> <mi>L</mi> <mi>R</mi></math> , and other variables have small to no effect. Manual <math><mi>PLLR</mi></math> closely matches automatically calculated <math><mi>PLLR</mi></math> following cross utterance averaging. Thus, practical comparisons between child speakers should be very comparable across the two methods.</p>","PeriodicalId":73500,"journal":{"name":"Interspeech","volume":"2024 ","pages":"5133-5137"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11977302/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interspeech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2024-2239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automated goodness of pronunciation scores measure deviation from typical adult speech by first phonetically segmenting speech using forced alignment and then computing phoneme likelihoods. Care must be taken to distinguish between the impact of alignment error (a spurious signal) and true acoustic deviation on the automated score. Using mixed effects modeling, we predict Δ P L L R , the difference between pronunciation scores computed using manual alignment ( P L L R m ) versus computed using automatic forced alignments ( P L L R a ). Pronunciation deviations and alignment error are both magnified in children's speech and may be influenced by factors such as phoneme position and phoneme type. Our methodology shows that alignment error has a moderate effect on Δ P L L R , and other variables have small to no effect. Manual PLLR closely matches automatically calculated PLLR following cross utterance averaging. Thus, practical comparisons between child speakers should be very comparable across the two methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对齐错误如何影响儿童语音自动评分?
自动发音优度评分通过首先使用强制对齐对语音进行语音分割,然后计算音素可能性来衡量与典型成人语音的偏差。必须注意区分对准误差(一种伪信号)和真实声学偏差对自动评分的影响。使用混合效应建模,我们预测Δ P L L R,使用手动对齐计算的发音分数(P L L R m)与使用自动强制对齐计算的发音分数(P L L R a)之间的差异。发音偏差和对齐误差在儿童言语中都会被放大,并可能受到音素位置和音素类型等因素的影响。我们的方法表明,对准误差对Δ P L L R的影响中等,其他变量的影响很小甚至没有影响。手动PLLR与交叉发音平均后自动计算的PLLR紧密匹配。因此,儿童说话者之间的实际比较应该在两种方法之间具有可比性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrastive Learning Approach for Assessment of Phonological Precision in Patients with Tongue Cancer Using MRI Data. Segmental and Suprasegmental Speech Foundation Models for Classifying Cognitive Risk Factors: Evaluating Out-of-the-Box Performance. How Does Alignment Error Affect Automated Pronunciation Scoring in Children's Speech? Comparing ambulatory voice measures during daily life with brief laboratory assessments in speakers with and without vocal hyperfunction. YOLO-Stutter: End-to-end Region-Wise Speech Dysfluency Detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1