{"title":"Imaging the 4D Chemical Heterogeneity of Single V2O5 Particles During Charging/Discharging Processes","authors":"Jiaxin Mao, Binhong Wu, Rui Hao","doi":"10.1002/adma.202501425","DOIUrl":null,"url":null,"abstract":"<p>Microparticle cathode materials are widely used in secondary batteries. However, obtaining dynamic chemical heterogeneities of these microparticles is challenging, hindering in-depth mechanistic investigation of the underlying processes. For example, although vanadium pentoxide shows promise as an electrode material for zinc ion batteries, its poor performance's root cause is elusive. Herein, a fluorescence/scattering dual-mode spinning disk confocal microscopy-based approach is developed to visualize the 4D chemical heterogeneity of single V<sub>2</sub>O<sub>5</sub> particles during cycling. Dual-mode in situ imaging identifies valence state changes of vanadium ions with high spatiotemporal resolution. A unique difference is observed between the scattering intensities of a particle's bottom electric contact points and the rest parts during the discharging process. In contrast, fluorescence intensity variation suggests high consistency across the particles. Correlative Raman, UV–Vis spectroscopy, and electrochemical impedance spectroscopy analyses suggest the precipitation of V<sup>3+</sup> species at the bottom interface of the V<sub>2</sub>O<sub>5</sub> electrode, leading to increased electron transfer resistance and compromised overall performance. A coordination strategy between ethylene diamine tetraacetic acid and V<sup>3+</sup> is proposed for inhibiting V<sup>3+</sup> precipitation, and its effectiveness is further verified by imaging and electrochemical impedance spectroscopy analyses. Insights from the imaging approach presented herein will enable the rational design of high-performance batteries.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 26","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202501425","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Microparticle cathode materials are widely used in secondary batteries. However, obtaining dynamic chemical heterogeneities of these microparticles is challenging, hindering in-depth mechanistic investigation of the underlying processes. For example, although vanadium pentoxide shows promise as an electrode material for zinc ion batteries, its poor performance's root cause is elusive. Herein, a fluorescence/scattering dual-mode spinning disk confocal microscopy-based approach is developed to visualize the 4D chemical heterogeneity of single V2O5 particles during cycling. Dual-mode in situ imaging identifies valence state changes of vanadium ions with high spatiotemporal resolution. A unique difference is observed between the scattering intensities of a particle's bottom electric contact points and the rest parts during the discharging process. In contrast, fluorescence intensity variation suggests high consistency across the particles. Correlative Raman, UV–Vis spectroscopy, and electrochemical impedance spectroscopy analyses suggest the precipitation of V3+ species at the bottom interface of the V2O5 electrode, leading to increased electron transfer resistance and compromised overall performance. A coordination strategy between ethylene diamine tetraacetic acid and V3+ is proposed for inhibiting V3+ precipitation, and its effectiveness is further verified by imaging and electrochemical impedance spectroscopy analyses. Insights from the imaging approach presented herein will enable the rational design of high-performance batteries.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.