2D Indium-Vacancy-Rich ZnIn2S4 Nanocatalysts for Sonocatalytic Cancer Suppression by Boosting Cancer-Cell Pyroptosis

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2025-04-10 DOI:10.1002/adma.202414432
Zeyu Wang, Xue Wang, Hongsheng Fang, Xinran Song, Li Ding, Meiqi Chang, Hao Yan, Yu Chen
{"title":"2D Indium-Vacancy-Rich ZnIn2S4 Nanocatalysts for Sonocatalytic Cancer Suppression by Boosting Cancer-Cell Pyroptosis","authors":"Zeyu Wang,&nbsp;Xue Wang,&nbsp;Hongsheng Fang,&nbsp;Xinran Song,&nbsp;Li Ding,&nbsp;Meiqi Chang,&nbsp;Hao Yan,&nbsp;Yu Chen","doi":"10.1002/adma.202414432","DOIUrl":null,"url":null,"abstract":"<p>Sonocatalytic therapy is gaining interest for its non-invasive nature, precise control, and excellent tissue penetration, making it a promising approach for treating malignant tumors. While defect engineering enhances electron and hole separation to boost reactive oxygen species (ROS) generation, challenges in constructing effective hole traps compared to electron traps severely limit ROS production. In this study, 2D ZnIn<sub>2</sub>S<sub>4</sub>-V<sub>In</sub> nanosheets enriched are rationally designed with In vacancies for the efficient capture of electrons and holes, which has achieved substantial sonocatalytic performance in suppressing tumor growth. Compared to pristine ZnIn<sub>2</sub>S<sub>4</sub> nanosheets, which possess a periodic electrostatic potential inherent in their structure, In vacancies effectively disrupt this potential field, promote the simultaneous separation and migration of charge carriers, and inhibit their recombination, thereby boosting ROS production and inducing tumor cell pyroptosis via the ROS-NLRP3-caspase-1-GSDMD pathway under ultrasound (US) irradiation. Furthermore, both pristine ZnIn<sub>2</sub>S<sub>4</sub> and ZnIn<sub>2</sub>S<sub>4</sub>-V<sub>In</sub> nanosheets exhibited remarkable biocompatibility. In vitro and in vivo antineoplastic experiments demonstrate that this sonocatalytic approach effectively promotes tumor elimination, underscoring the critical importance of defect-engineered optimization in sonocatalytic tumor therapy.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 24","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202414432","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sonocatalytic therapy is gaining interest for its non-invasive nature, precise control, and excellent tissue penetration, making it a promising approach for treating malignant tumors. While defect engineering enhances electron and hole separation to boost reactive oxygen species (ROS) generation, challenges in constructing effective hole traps compared to electron traps severely limit ROS production. In this study, 2D ZnIn2S4-VIn nanosheets enriched are rationally designed with In vacancies for the efficient capture of electrons and holes, which has achieved substantial sonocatalytic performance in suppressing tumor growth. Compared to pristine ZnIn2S4 nanosheets, which possess a periodic electrostatic potential inherent in their structure, In vacancies effectively disrupt this potential field, promote the simultaneous separation and migration of charge carriers, and inhibit their recombination, thereby boosting ROS production and inducing tumor cell pyroptosis via the ROS-NLRP3-caspase-1-GSDMD pathway under ultrasound (US) irradiation. Furthermore, both pristine ZnIn2S4 and ZnIn2S4-VIn nanosheets exhibited remarkable biocompatibility. In vitro and in vivo antineoplastic experiments demonstrate that this sonocatalytic approach effectively promotes tumor elimination, underscoring the critical importance of defect-engineered optimization in sonocatalytic tumor therapy.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2D富铟空位ZnIn2S4纳米催化剂通过促进癌细胞焦亡来声催化抑癌
声催化疗法因其非侵入性、精确控制和良好的组织穿透性而引起人们的兴趣,使其成为治疗恶性肿瘤的一种很有前途的方法。虽然缺陷工程增强了电子和空穴的分离以促进活性氧(ROS)的产生,但与电子陷阱相比,构建有效空穴陷阱的挑战严重限制了ROS的产生。在本研究中,通过合理设计富含铟空位的二维ZnIn2S4-VIn纳米片,有效捕获电子和空穴,在抑制肿瘤生长方面取得了显著的声催化性能。与具有周期性静电势的原始ZnIn2S4纳米片相比,in空位有效地破坏了这种势场,促进了电荷载流子的同时分离和迁移,并抑制了它们的重组,从而在超声(US)照射下通过ROS- nlrp3 -caspase-1- gsdmd途径促进ROS的产生,诱导肿瘤细胞凋亡。此外,ZnIn2S4和ZnIn2S4- vin纳米片均表现出良好的生物相容性。体外和体内抗肿瘤实验表明,这种声催化方法有效地促进了肿瘤的消除,强调了缺陷工程优化在声催化肿瘤治疗中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
A Critical Strain Window for Stabilizing Polar Orthorhombic Hf 0 . 5 Zr 0 . 5 O 2 Epitaxial Thin Films with Scale‐Free Domain Walls Hierarchical Co‐Assembly Achieves Shape‐Programmable All‐Boron‐Nitride Monoliths with Excellent Thermophysical Performances Poly(Ionic Liquid) Nanofibers Suppress S. aureus Membrane Vesicle‐Induced NETosis to Mitigate Wound and Lung Damage An AI-embedded, Wearable Dual Closed-Loop Insulin Delivery System for Precision Diabetes Management. Vapor-Flux Growth of c-BP Single Crystals With Concurrently High Electrical Resistivity and Isotope-Enhanced High Thermal Conductivity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1