{"title":"An improved high-temperature resistant electrical connection structure based on polymer-derived ceramic SiCN for thin-film sensors","authors":"Zaifu Cui, Huayu Che, Wenjin Duan, Zhenguo Lu, Huaxiu Liang, Huiting Zeng, Bohuai Gou, Yihan Zhang, Shuo Chen, Zhaohong Jiang, Jiahong Huang, Xiaojun Chen","doi":"10.1016/j.ceramint.2025.01.028","DOIUrl":null,"url":null,"abstract":"<div><div>High-temperature-resistant thin-film sensors can quickly and accurately obtain signals such as temperature, heat flux, and strain from surfaces in high-temperature applications, and the reliability of the sensors is determined by the quality of the lead electrical connection structure of the high-temperature-resistant thin-film sensors. Aiming at the challenges of complicated process and high cost of the lead electrical connection structure of high temperature resistant thin-film sensors, a lead electrical connection structure is proposed based on polymer-derived ceramics (PDC). The lead connector was prepared using a high-temperature wire and polymer-derived ceramics, and then the lead connector and the lead film were sintered together by PDC paste to obtain the electrical connection between the lead film and the high-temperature wire. The surface morphology and electrical properties as well as the high-temperature stability of the lead connector were characterized, and the proposed lead electrical connection structure was also used for polymer-derived ceramic thin-film thermistors, and multiple rounds of resistance temperature tests were conducted from room temperature to 800 °C. The results show that the lead connector has an oxide layer on the surface and a conductive layer on the inside, and the structure can withstand temperatures up to 1100 °C with good high-temperature stability, which makes it possible to be used for high-temperature-resistant polymer-derived ceramic thin-film sensors. A low-cost and simple process high-temperature lead electrical connection structure is provided for high-temperature-resistant thin-film sensors.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"51 9","pages":"Pages 11747-11754"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884225000288","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
High-temperature-resistant thin-film sensors can quickly and accurately obtain signals such as temperature, heat flux, and strain from surfaces in high-temperature applications, and the reliability of the sensors is determined by the quality of the lead electrical connection structure of the high-temperature-resistant thin-film sensors. Aiming at the challenges of complicated process and high cost of the lead electrical connection structure of high temperature resistant thin-film sensors, a lead electrical connection structure is proposed based on polymer-derived ceramics (PDC). The lead connector was prepared using a high-temperature wire and polymer-derived ceramics, and then the lead connector and the lead film were sintered together by PDC paste to obtain the electrical connection between the lead film and the high-temperature wire. The surface morphology and electrical properties as well as the high-temperature stability of the lead connector were characterized, and the proposed lead electrical connection structure was also used for polymer-derived ceramic thin-film thermistors, and multiple rounds of resistance temperature tests were conducted from room temperature to 800 °C. The results show that the lead connector has an oxide layer on the surface and a conductive layer on the inside, and the structure can withstand temperatures up to 1100 °C with good high-temperature stability, which makes it possible to be used for high-temperature-resistant polymer-derived ceramic thin-film sensors. A low-cost and simple process high-temperature lead electrical connection structure is provided for high-temperature-resistant thin-film sensors.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.