Magnetic-plasmonic nanoparticle-based surface-enhanced Raman scattering for biomedical detection

Fengxue Wei , Yaling Liu
{"title":"Magnetic-plasmonic nanoparticle-based surface-enhanced Raman scattering for biomedical detection","authors":"Fengxue Wei ,&nbsp;Yaling Liu","doi":"10.1016/j.saa.2025.126177","DOIUrl":null,"url":null,"abstract":"<div><div>Surface-enhanced Raman scattering (SERS) is a powerful spectroscopic technique that enables rapid, non-destructive, and susceptible detection of biological samples. The magnetic-plasmonic composite materials composed of magnetic and plasmonic nanoparticles have attracted extensive attention as SERS substrates in the biomedical field because of their ability to enrich, separate, and selectively identify biomolecules. In this review, the state-of-art progress of magnetic-plasmonic nanoparticle (MPNP)-based SERS substrates for biomedical detection is highlighted, covering the design and construction of MPNPs with different morphologies, organic and inorganic surface functionalization strategies adopted to improve the adaptability and applicability in biological systems for MPNPs, application development of MPNPs in biomedical detection, as well as the future challenges and issues to be addressed. It is highly expected that this review will help to fully understand the research status of MPNP-based SERS substrates and facilitate their further development and wider application in biological systems.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"338 ","pages":"Article 126177"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142525004834","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Surface-enhanced Raman scattering (SERS) is a powerful spectroscopic technique that enables rapid, non-destructive, and susceptible detection of biological samples. The magnetic-plasmonic composite materials composed of magnetic and plasmonic nanoparticles have attracted extensive attention as SERS substrates in the biomedical field because of their ability to enrich, separate, and selectively identify biomolecules. In this review, the state-of-art progress of magnetic-plasmonic nanoparticle (MPNP)-based SERS substrates for biomedical detection is highlighted, covering the design and construction of MPNPs with different morphologies, organic and inorganic surface functionalization strategies adopted to improve the adaptability and applicability in biological systems for MPNPs, application development of MPNPs in biomedical detection, as well as the future challenges and issues to be addressed. It is highly expected that this review will help to fully understand the research status of MPNP-based SERS substrates and facilitate their further development and wider application in biological systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁等离子体纳米粒子表面增强拉曼散射用于生物医学检测
表面增强拉曼散射(SERS)是一种强大的光谱技术,可以快速,非破坏性和敏感地检测生物样品。由磁性和等离子体纳米粒子组成的磁-等离子体复合材料由于具有富集、分离和选择性识别生物分子的能力,作为SERS底物在生物医学领域受到了广泛关注。本文综述了基于磁等离子体纳米粒子(MPNP)的生物医学检测SERS衬底的研究进展,包括不同形貌的MPNP的设计与构建、为提高MPNP在生物系统中的适应性和适用性而采用的有机和无机表面功能化策略、MPNP在生物医学检测中的应用发展以及未来面临的挑战和需要解决的问题。希望本文综述有助于全面了解基于mpnp的SERS底物的研究现状,促进其在生物系统中的进一步开发和广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
11.40%
发文量
1364
审稿时长
40 days
期刊介绍: Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science. The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments. Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate. Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to: Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences, Novel experimental techniques or instrumentation for molecular spectroscopy, Novel theoretical and computational methods, Novel applications in photochemistry and photobiology, Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.
期刊最新文献
A mitochondria-targeted “turn-on” near-infrared fluorescent probe for imaging protein Sulfenic acids in live cells under oxidative stress Outside Front Cover Editorial Board Colorimetric and fluorometric dual-response system for rapid analysis of gentamicin in real samples Smartphone-integrated ratiometric fluorescent sensor based on Al-doped carbon dots for specific detection of chlortetracycline
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1