Unraveling Reaction Path Bifurcation: Insights Into Electron Movement via Natural Reaction Orbitals

IF 4.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Computational Chemistry Pub Date : 2025-04-11 DOI:10.1002/jcc.70101
Tatsuhiro Nakanishi, Takuro Tsutsumi, Yuriko Ono, Kazuki Sada, Tetsuya Taketsugu
{"title":"Unraveling Reaction Path Bifurcation: Insights Into Electron Movement via Natural Reaction Orbitals","authors":"Tatsuhiro Nakanishi,&nbsp;Takuro Tsutsumi,&nbsp;Yuriko Ono,&nbsp;Kazuki Sada,&nbsp;Tetsuya Taketsugu","doi":"10.1002/jcc.70101","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study investigates the Beckmann rearrangement of 1-phenyl-2-propanone oxime derivatives, focusing on the reaction path bifurcation behavior from the perspective of electron movement. The previous work reported that electron-withdrawing substituents drove the reaction toward the rearrangement pathway, while electron-donating substituents favored the fragmentation pathway. Through natural reaction orbital (NRO) analysis, this research demonstrates how electrons move at critical branching points, specifically in the directions of the intrinsic reaction coordinate (IRC) and the projected vibrational mode associated with the branching behavior. The NRO approach, which complements traditional IRC and ab initio molecular dynamics methods, not only provides valuable quantitative insights for predicting product distributions but also aids in the strategic design of substituents for desired products. These findings extend our understanding of reaction mechanisms and byproduct formation, offering fresh perspectives on complex chemical transformations.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 10","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70101","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the Beckmann rearrangement of 1-phenyl-2-propanone oxime derivatives, focusing on the reaction path bifurcation behavior from the perspective of electron movement. The previous work reported that electron-withdrawing substituents drove the reaction toward the rearrangement pathway, while electron-donating substituents favored the fragmentation pathway. Through natural reaction orbital (NRO) analysis, this research demonstrates how electrons move at critical branching points, specifically in the directions of the intrinsic reaction coordinate (IRC) and the projected vibrational mode associated with the branching behavior. The NRO approach, which complements traditional IRC and ab initio molecular dynamics methods, not only provides valuable quantitative insights for predicting product distributions but also aids in the strategic design of substituents for desired products. These findings extend our understanding of reaction mechanisms and byproduct formation, offering fresh perspectives on complex chemical transformations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示反应路径分岔:通过自然反应轨道对电子运动的洞察
本研究对1-苯基-2-丙烷肟衍生物的贝克曼重排进行了研究,重点从电子运动的角度研究了反应路径的分岔行为。先前的研究报道了吸电子取代基推动反应向重排途径发展,而供电子取代基则倾向于断裂途径。通过自然反应轨道(NRO)分析,研究了电子在关键分支点上的运动,特别是在本征反应坐标(IRC)方向和与分支行为相关的投影振动模式上的运动。NRO方法补充了传统的IRC和从头算分子动力学方法,不仅为预测产品分布提供了有价值的定量见解,而且有助于对所需产品的取代基进行战略性设计。这些发现扩展了我们对反应机制和副产物形成的理解,为复杂的化学转化提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
期刊最新文献
Computational Characterization of the Energetics, Structure, and Spectroscopy of Biofuel Precursors: The Case of Furfural-Acetone-Furfural. Computational Insights Into All-Fused Ring Non-Fullerene Acceptors for Enhanced Stability and Performance. Unraveling the Novel Furan-Based π-Conjugated Systems: Insights From Optimally Tuned Long-Range Corrected DFT Functionals, PBC-DFT Methods, and Excited States Studies for Oxa[n]Helicenes. Direct and Superexchange Couplings for Electron Transfer in Donor-Bridge-Acceptor Systems. Accuracy and Scaling Factors of Non-Empirical Double-Hybrid Density Functionals for Harmonic and Fundamental Frequencies (And ZPVE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1