Tanaporn Na Narong, Zoe N. Zachko, Steven B. Torrisi, Simon J. L. Billinge
{"title":"Interpretable multimodal machine learning analysis of X-ray absorption near-edge spectra and pair distribution functions","authors":"Tanaporn Na Narong, Zoe N. Zachko, Steven B. Torrisi, Simon J. L. Billinge","doi":"10.1038/s41524-025-01589-3","DOIUrl":null,"url":null,"abstract":"<p>We used interpretable machine learning to combine information from multiple heterogeneous spectra: X-ray absorption near-edge spectra (XANES) and atomic pair distribution functions (PDFs) to extract local structural and chemical environments of transition metal cations in oxides. Random forest models were trained on simulated XANES, PDF, and both combined to extract oxidation state, coordination number, and mean nearest-neighbor bond length. XANES-only models generally outperformed PDF-only models, even for structural tasks, although using the metal’s differential-PDFs (dPDFs) instead of total-PDFs narrowed this gap. When combined with PDFs, information from XANES often dominates the prediction. Our results demonstrate that XANES contains rich structural information and highlight the utility of species-specificity. This interpretable, multimodal approach is quick to implement with suitable databases and offers valuable insights into the relative strengths of different modalities, guiding researchers in experiment design and identifying when combining complementary techniques adds meaningful information to a scientific investigation.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"80 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01589-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We used interpretable machine learning to combine information from multiple heterogeneous spectra: X-ray absorption near-edge spectra (XANES) and atomic pair distribution functions (PDFs) to extract local structural and chemical environments of transition metal cations in oxides. Random forest models were trained on simulated XANES, PDF, and both combined to extract oxidation state, coordination number, and mean nearest-neighbor bond length. XANES-only models generally outperformed PDF-only models, even for structural tasks, although using the metal’s differential-PDFs (dPDFs) instead of total-PDFs narrowed this gap. When combined with PDFs, information from XANES often dominates the prediction. Our results demonstrate that XANES contains rich structural information and highlight the utility of species-specificity. This interpretable, multimodal approach is quick to implement with suitable databases and offers valuable insights into the relative strengths of different modalities, guiding researchers in experiment design and identifying when combining complementary techniques adds meaningful information to a scientific investigation.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.