Proposing Altermagnetic-Ferroelectric Type-III Multiferroics with Robust Magnetoelectric Coupling

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2025-04-10 DOI:10.1002/adma.202502575
Wei Sun, Changhong Yang, Wenxuan Wang, Ying Liu, Xiaotian Wang, Shifeng Huang, Zhenxiang Cheng
{"title":"Proposing Altermagnetic-Ferroelectric Type-III Multiferroics with Robust Magnetoelectric Coupling","authors":"Wei Sun,&nbsp;Changhong Yang,&nbsp;Wenxuan Wang,&nbsp;Ying Liu,&nbsp;Xiaotian Wang,&nbsp;Shifeng Huang,&nbsp;Zhenxiang Cheng","doi":"10.1002/adma.202502575","DOIUrl":null,"url":null,"abstract":"<p>Multiferroic materials, characterized by the coexisting of ferroelectric polarization (breaking space- inversion symmetry, 𝒫) and magnetism (breaking time-reversal symmetry, 𝒯), with strong magnetoelectric coupling, are highly sought after for advanced technological applications. Novel altermagnets, distinct from conventional magnets, have recently been revealed to exhibit unique spin polarization protected by crystal symmetry, which naturally overcomes the isolation of magnetism from ferroelectrics associated with spatial symmetry. In this study, a novel class of type-III multiferroics is proposed, which leverages the unique symmetry of altermagnets to enforce spin-ferroelectric locking, setting them apart from conventional multiferroics. Through first-principles calculations, ferroelectric switching is shown to fully invert the spin polarization of altermagnets, equivalent to a 180° reversal of magnetic spin. This altermagnetic phase controlled by ferroelectrics can be effectively probed using the magneto-optical Kerr effect, revealing a new class of multiferroics with intrinsic and deterministic magnetoelectric coupling. This theoretical advancement redefines the design principles of magnetoelectric materials and lays the foundation for the design of next-generation spintronic devices leveraging altermagnetism.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 26","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202502575","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202502575","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multiferroic materials, characterized by the coexisting of ferroelectric polarization (breaking space- inversion symmetry, 𝒫) and magnetism (breaking time-reversal symmetry, 𝒯), with strong magnetoelectric coupling, are highly sought after for advanced technological applications. Novel altermagnets, distinct from conventional magnets, have recently been revealed to exhibit unique spin polarization protected by crystal symmetry, which naturally overcomes the isolation of magnetism from ferroelectrics associated with spatial symmetry. In this study, a novel class of type-III multiferroics is proposed, which leverages the unique symmetry of altermagnets to enforce spin-ferroelectric locking, setting them apart from conventional multiferroics. Through first-principles calculations, ferroelectric switching is shown to fully invert the spin polarization of altermagnets, equivalent to a 180° reversal of magnetic spin. This altermagnetic phase controlled by ferroelectrics can be effectively probed using the magneto-optical Kerr effect, revealing a new class of multiferroics with intrinsic and deterministic magnetoelectric coupling. This theoretical advancement redefines the design principles of magnetoelectric materials and lays the foundation for the design of next-generation spintronic devices leveraging altermagnetism.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提出具有稳健磁电耦合的异磁-铁电 III 型多铁氧体
多铁性材料的特点是铁电极化(打破空间反转对称性,𝒫)和磁性(打破时间反转对称性,𝒯)共存,并具有很强的磁电耦合,在先进技术应用中备受追捧。最近发现,有别于传统磁体的新型变磁体在晶体对称性的保护下表现出独特的自旋极化,这自然克服了与空间对称性相关的磁性与铁电的隔离。本研究提出了一类新型的 III 型多铁氧体,它利用改性磁体的独特对称性实现了自旋-铁电锁定,使其有别于传统的多铁氧体。通过第一原理计算,铁电转换可完全反转变磁体的自旋极化,相当于磁自旋的 180° 反转。利用磁光克尔效应可以有效地探测这种由铁电控制的改磁相,从而揭示了一类具有内在确定性磁电耦合的新型多铁氧体。这一理论进展重新定义了磁电材料的设计原理,为利用变磁性设计下一代自旋电子器件奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Tailoring Nano-Metal-Organic Frameworks and Their Derivatives: From Morphology Engineering to Structural and Functional Optimization. Magnetic Mesoporous Nanoparticles Loaded with Lycium barbarum Glycopeptide for Targeted Therapy of Noise-Triggered Auditory Dysfunction. Decoupling Density-Strength-Toughness in Wood Modification via Molecular Compaction. Size-Effect Stiffening and Densification Strain Regulation Shape Micro Metamaterials for Ultra-High, Cycle-Stable Energy Absorption. Engineering Temperature-Switchable Conducting Metal-Phenolic Network Films.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1