Emittance minimization for aberration correction I: Aberration correction of an electron microscope without knowing the aberration coefficients

IF 2 3区 工程技术 Q2 MICROSCOPY Ultramicroscopy Pub Date : 2025-04-05 DOI:10.1016/j.ultramic.2025.114137
Desheng Ma , Steven E. Zeltmann , Chenyu Zhang , Zhaslan Baraissov , Yu-Tsun Shao , Cameron Duncan , Jared Maxson , Auralee Edelen , David A. Muller
{"title":"Emittance minimization for aberration correction I: Aberration correction of an electron microscope without knowing the aberration coefficients","authors":"Desheng Ma ,&nbsp;Steven E. Zeltmann ,&nbsp;Chenyu Zhang ,&nbsp;Zhaslan Baraissov ,&nbsp;Yu-Tsun Shao ,&nbsp;Cameron Duncan ,&nbsp;Jared Maxson ,&nbsp;Auralee Edelen ,&nbsp;David A. Muller","doi":"10.1016/j.ultramic.2025.114137","DOIUrl":null,"url":null,"abstract":"<div><div>Precise alignment of the electron beam is critical for successful application of scanning transmission electron microscopes (STEM) to understanding materials at atomic level. Despite the success of aberration correctors, aberration correction is still a complex process. Here we approach aberration correction from the perspective of accelerator physics and show it is equivalent to minimizing the emittance growth of the beam, the span of the phase space distribution of the probe. We train a deep learning model to predict emittance growth from experimentally accessible Ronchigrams. Both simulation and experimental results show the model can capture the emittance variation with aberration coefficients accurately. We further demonstrate the model can act as a fast-executing function for the global optimization of the lens parameters. Our approach enables new ways to quickly quantify and automate aberration correction that takes advantage of the rapid measurements possible with high-speed electron cameras. In part II of the paper, we demonstrate how the emittance metric enables rapid online tuning of the aberration corrector using Bayesian optimization.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"273 ","pages":"Article 114137"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399125000361","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Precise alignment of the electron beam is critical for successful application of scanning transmission electron microscopes (STEM) to understanding materials at atomic level. Despite the success of aberration correctors, aberration correction is still a complex process. Here we approach aberration correction from the perspective of accelerator physics and show it is equivalent to minimizing the emittance growth of the beam, the span of the phase space distribution of the probe. We train a deep learning model to predict emittance growth from experimentally accessible Ronchigrams. Both simulation and experimental results show the model can capture the emittance variation with aberration coefficients accurately. We further demonstrate the model can act as a fast-executing function for the global optimization of the lens parameters. Our approach enables new ways to quickly quantify and automate aberration correction that takes advantage of the rapid measurements possible with high-speed electron cameras. In part II of the paper, we demonstrate how the emittance metric enables rapid online tuning of the aberration corrector using Bayesian optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于像差校正的发射率最小化 I:在不知道像差系数的情况下校正电子显微镜的像差
电子束的精确对准是扫描透射电子显微镜(STEM)在原子水平上理解材料的成功应用的关键。尽管像差校正器取得了成功,但像差校正仍然是一个复杂的过程。本文从加速器物理的角度探讨了像差校正问题,并指出它相当于最小化光束的发射度增长,即探头相空间分布的跨度。我们训练了一个深度学习模型,从实验可获得的Ronchigrams中预测发射率的增长。仿真和实验结果表明,该模型能较准确地捕捉到发射度随像差系数的变化。我们进一步证明了该模型可以作为透镜参数全局优化的快速执行函数。我们的方法提供了新的方法来快速量化和自动化像差校正,利用高速电子相机的快速测量。在本文的第二部分中,我们演示了发射度度量如何使用贝叶斯优化实现像差校正器的快速在线调谐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultramicroscopy
Ultramicroscopy 工程技术-显微镜技术
CiteScore
4.60
自引率
13.60%
发文量
117
审稿时长
5.3 months
期刊介绍: Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.
期刊最新文献
Evaluation of the reproducibility and crystal tracking precision of TEM goniometers in tomography experiments STEM-EELS study of beam damage in polymers and extra-terrestrial organic matter using direct electron detectors Fabrication and characterization of boron-terminated tetravacancies in monolayer hBN using STEM, EELS and electron ptychography A correlation-based optimization model to recover lost and distorted data from scanning tunneling microscopy images based on density functional theory Assessing the electric field sensitivity measured by pixelated differential phase contrast imaging in vacuum both in the absence of external fields and under field-bound conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1