Nanoplastics pre-exposure to microbial consortium influencing their ability to degrade pollutants: “Stagnation effect” and “Self-recovery”

IF 12.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research Pub Date : 2025-04-12 DOI:10.1016/j.watres.2025.123642
Wenbo Guo , Xiaoyu Ma , Huiying Yu , Tiansong Song , Zhicheng Li , Hao Qiu , Xinde Cao , Ling Zhao
{"title":"Nanoplastics pre-exposure to microbial consortium influencing their ability to degrade pollutants: “Stagnation effect” and “Self-recovery”","authors":"Wenbo Guo ,&nbsp;Xiaoyu Ma ,&nbsp;Huiying Yu ,&nbsp;Tiansong Song ,&nbsp;Zhicheng Li ,&nbsp;Hao Qiu ,&nbsp;Xinde Cao ,&nbsp;Ling Zhao","doi":"10.1016/j.watres.2025.123642","DOIUrl":null,"url":null,"abstract":"<div><div>Nanoplastics (NPs) coexist with microorganisms in global water environmental systems, showing spatial-temporal differentiation. Therefore, studying the behavior of microorganisms previously exposed to NPs is particularly important. With 2,4-dichlorophenol (DCP)-degrading microflora as model microorganisms, this study found that higher dose (10, 100 mg/L) of polystyrene NPs pre-exposure inhibited bacterial DCP degradation prolonging the stagnation period, while lower dose (1 mg/L) of NPs on the contrary stimulated their degradation ability. The degradation delay coefficients (μ) showed a significant positive correlation with the duration of pre-exposure. Specifically, the μ values observed after 1 day, 3 days, and 9 days of pre-exposure to 10 mg/L NPs were 2.5, 2.9, and 3.8, respectively, while those for 100 mg/L NPs were 3.2, 4.0, and 5.1. In contrast, the control group without NPs exhibited a μ value of only 1.9. Pre-exposure caused NPs to enter bacterial cells, leading to oxidative damage, membrane impairment, and potential DNA damage. This carry-over toxicity suppressed the consortium's degradation efficiency of DCP. During the stagnation period, microorganisms were striving to redeem themselves, recovering their abilities of biofilm formation, chemotaxis and motility by upregulating the expression of <em>wspA, mcp,</em> and <em>pilJ</em> gene families, thus reinforcing inter-population regulatory cooperation, thereby restarting the DCP degradation. With the duration of pre-exposure to PS NPs increased, the recovery time required for bacterial communities also lengthened. It is crucial to pay attention to the biological responses to subsequent pollutants triggered by pre-exposure.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"282 ","pages":"Article 123642"},"PeriodicalIF":12.4000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425005524","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoplastics (NPs) coexist with microorganisms in global water environmental systems, showing spatial-temporal differentiation. Therefore, studying the behavior of microorganisms previously exposed to NPs is particularly important. With 2,4-dichlorophenol (DCP)-degrading microflora as model microorganisms, this study found that higher dose (10, 100 mg/L) of polystyrene NPs pre-exposure inhibited bacterial DCP degradation prolonging the stagnation period, while lower dose (1 mg/L) of NPs on the contrary stimulated their degradation ability. The degradation delay coefficients (μ) showed a significant positive correlation with the duration of pre-exposure. Specifically, the μ values observed after 1 day, 3 days, and 9 days of pre-exposure to 10 mg/L NPs were 2.5, 2.9, and 3.8, respectively, while those for 100 mg/L NPs were 3.2, 4.0, and 5.1. In contrast, the control group without NPs exhibited a μ value of only 1.9. Pre-exposure caused NPs to enter bacterial cells, leading to oxidative damage, membrane impairment, and potential DNA damage. This carry-over toxicity suppressed the consortium's degradation efficiency of DCP. During the stagnation period, microorganisms were striving to redeem themselves, recovering their abilities of biofilm formation, chemotaxis and motility by upregulating the expression of wspA, mcp, and pilJ gene families, thus reinforcing inter-population regulatory cooperation, thereby restarting the DCP degradation. With the duration of pre-exposure to PS NPs increased, the recovery time required for bacterial communities also lengthened. It is crucial to pay attention to the biological responses to subsequent pollutants triggered by pre-exposure.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米塑料预暴露于微生物联合体影响其降解污染物的能力:“停滞效应”和“自我恢复”
纳米塑料(NPs)在全球水环境系统中与微生物共存,呈现出时空分异。因此,研究先前暴露于NPs的微生物的行为尤为重要。本研究以2,4-二氯苯酚(DCP)降解菌群为模型微生物,发现高剂量(10,100 mg/L)的聚苯乙烯NPs预暴露抑制了细菌对DCP的降解,延长了停滞期,而低剂量(1 mg/L)的NPs反而刺激了细菌的降解能力。降解延迟系数(μ)与预暴露时间呈显著正相关。其中,10 mg/L NPs前1天、3天和9天的μ值分别为2.5、2.9和3.8,100 mg/L NPs前1天、3天和9天的μ值分别为3.2、4.0和5.1。而不含NPs的对照组μ值仅为1.9。预暴露导致NPs进入细菌细胞,导致氧化损伤、膜损伤和潜在的DNA损伤。这种携带毒性抑制了该菌群对DCP的降解效率。在停滞期,微生物努力自我救赎,通过上调wspA、mcp和pilJ基因家族的表达,恢复其生物膜形成能力、趋化能力和运动能力,从而加强种群间调控合作,重新启动DCP降解。随着PS NPs预暴露时间的延长,细菌群落所需的恢复时间也随之延长。至关重要的是要注意预先暴露所引发的对后续污染物的生物反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
期刊最新文献
Influence of Clay Mineral Type and Particle-to-Oil Ratio on the Transport and Deposition of Oil-Particle Aggregates in Coastal Porous Media Rewiring Biogeochemical Interactions: How Interbasin Water Transfers Shape DOM-Microbe Dynamics Revealing the unrecognized climate burden of aquaculture systems: A global insight into greenhouse gas emissions and mitigation strategies Characteristics of phosphorus-solubilizing bacteria and mediated phosphorus cycle in sediments of urban river-lake interfaces Ultra-high efficiency simultaneous nitritation, denitritation and phosphorus removal from digestate centrate using calcium-enhanced aerobic granular sludge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1