Superior ZnO-tolerant ability of the CeOx-WO3 mixed oxide catalysts for the selective catalytic reduction of NOx with NH3

IF 6.2 2区 工程技术 Q2 ENERGY & FUELS Journal of The Energy Institute Pub Date : 2025-04-08 DOI:10.1016/j.joei.2025.102096
Dong Ye , Yifeng Xu , Jingyi Feng , Xiaoxiang Wang , Li Sun , Kai Zhu , Ruitang Guo
{"title":"Superior ZnO-tolerant ability of the CeOx-WO3 mixed oxide catalysts for the selective catalytic reduction of NOx with NH3","authors":"Dong Ye ,&nbsp;Yifeng Xu ,&nbsp;Jingyi Feng ,&nbsp;Xiaoxiang Wang ,&nbsp;Li Sun ,&nbsp;Kai Zhu ,&nbsp;Ruitang Guo","doi":"10.1016/j.joei.2025.102096","DOIUrl":null,"url":null,"abstract":"<div><div>This article demonstrates the superior ZnO tolerance of the CeO<sub><em>x</em></sub>-WO<sub>3</sub> (CeW) mixed oxide, using the commercialized V<sub>2</sub>O<sub>5</sub>-WO<sub>3</sub>/TiO<sub>2</sub> (VW/Ti) catalyst as a reference. Both fresh CeW and VW/Ti catalysts exhibited &gt;90 % NO<sub><em>x</em></sub> conversion at temperatures above 300 °C. However, Upon ZnO introduction, the NO<sub><em>x</em></sub> conversion of both catalysts displayed a declining trend. Notably, at a ZnO loading of 7 wt%, the CeW catalyst maintained &gt;80 % NO<sub><em>x</em></sub> conversion, while the VW/Ti catalyst showed nearly 0 % NO<sub><em>x</em></sub> elimination under the same conditions. Characterizations results revealed that loading 3 wt% resulted in a 79 % loss of acid sites on the VW/Ti catalyst. This significant reduction in acidity hindered NH<sub>3</sub> utilization for NO<sub><em>x</em></sub> reduction, overweighing the positive effects of enhanced NH<sub>3</sub> activation through improved oxidative capacity. Additionally, NO<sub><em>x</em></sub> adsorption on the ZnO-poisoned catalyst surface formed inert nitrate species, which covered active sites, thereby explaining the severe ZnO-induced deactivation of the VW/Ti composite. In contrast, the ZnO-poisoned CeW catalyst retained moderate acidity, preserving 79 % of its acid sites for NH<sub>3</sub> adsorption. This substantial retention of acid sites ensured the effective progression of NO<sub><em>x</em></sub> elimination reactions, accounting for the satisfactory ZnO resistance of the CeW catalyst. These finding provide valuable insights for addressing the challenge of stable catalyst operation under ZnO-rich conditions.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"120 ","pages":"Article 102096"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967125001242","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This article demonstrates the superior ZnO tolerance of the CeOx-WO3 (CeW) mixed oxide, using the commercialized V2O5-WO3/TiO2 (VW/Ti) catalyst as a reference. Both fresh CeW and VW/Ti catalysts exhibited >90 % NOx conversion at temperatures above 300 °C. However, Upon ZnO introduction, the NOx conversion of both catalysts displayed a declining trend. Notably, at a ZnO loading of 7 wt%, the CeW catalyst maintained >80 % NOx conversion, while the VW/Ti catalyst showed nearly 0 % NOx elimination under the same conditions. Characterizations results revealed that loading 3 wt% resulted in a 79 % loss of acid sites on the VW/Ti catalyst. This significant reduction in acidity hindered NH3 utilization for NOx reduction, overweighing the positive effects of enhanced NH3 activation through improved oxidative capacity. Additionally, NOx adsorption on the ZnO-poisoned catalyst surface formed inert nitrate species, which covered active sites, thereby explaining the severe ZnO-induced deactivation of the VW/Ti composite. In contrast, the ZnO-poisoned CeW catalyst retained moderate acidity, preserving 79 % of its acid sites for NH3 adsorption. This substantial retention of acid sites ensured the effective progression of NOx elimination reactions, accounting for the satisfactory ZnO resistance of the CeW catalyst. These finding provide valuable insights for addressing the challenge of stable catalyst operation under ZnO-rich conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CeOx-WO3混合氧化物催化剂具有优异的耐zno能力,可选择性催化NH3还原NOx
本文以已商品化的V2O5-WO3/TiO2 (VW/Ti)催化剂为参照,论证了CeOx-WO3 (CeW)混合氧化物具有优异的ZnO耐受性。新鲜的CeW和VW/Ti催化剂在300°C以上的温度下均表现出90%的NOx转化率。而引入ZnO后,两种催化剂的NOx转化率均呈现下降趋势。值得注意的是,当ZnO负载为7wt %时,CeW催化剂保持了80%的NOx转化率,而VW/Ti催化剂在相同条件下的NOx去除率接近0%。表征结果表明,负载3 wt%导致VW/Ti催化剂上酸位损失79%。酸度的显著降低阻碍了NH3对NOx还原的利用,超过了通过提高氧化能力增强NH3活化的积极作用。此外,NOx吸附在zno中毒的催化剂表面形成惰性硝酸盐,覆盖活性位点,从而解释了zno导致VW/Ti复合材料严重失活的原因。相比之下,zno中毒的CeW催化剂保持中等酸性,保留了79%的酸位用于NH3吸附。酸位的大量保留确保了NOx消除反应的有效进行,这也是CeW催化剂具有令人满意的抗氧化锌性能的原因。这些发现为解决富zno条件下催化剂稳定运行的挑战提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of The Energy Institute
Journal of The Energy Institute 工程技术-能源与燃料
CiteScore
10.60
自引率
5.30%
发文量
166
审稿时长
16 days
期刊介绍: The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include: Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies Emissions and environmental pollution control; safety and hazards; Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS; Petroleum engineering and fuel quality, including storage and transport Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems Energy storage The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.
期刊最新文献
Mechanistic investigation of H2/CO ratio on laminar flame characteristics of NH3/syngas blends Effect of CaO on the product distribution and S/N migration and transformation during oily sludge pyrolysis Synergistic mechanism and radicals interaction of the Co-SCWG of cellulose and polystyrene based on ReaxFF-MD and DFT Development of a skeletal mechanism for five-component diesel surrogate model by emulating physical and chemical properties Study on laminar combustion characteristics of NH3/DME blended fuel under different oxygen enrichment coefficients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1