Achieving High-Temperature Oxidation and Corrosion Resistance in Fe–Mn–Cr–Al–Cu–C TWIP Steel via Annealing Control

IF 3.9 2区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Acta Metallurgica Sinica-English Letters Pub Date : 2025-02-25 DOI:10.1007/s40195-025-01821-5
Yang Feng, Shuai Wang, Yang Zhao, Li-Qing Chen
{"title":"Achieving High-Temperature Oxidation and Corrosion Resistance in Fe–Mn–Cr–Al–Cu–C TWIP Steel via Annealing Control","authors":"Yang Feng,&nbsp;Shuai Wang,&nbsp;Yang Zhao,&nbsp;Li-Qing Chen","doi":"10.1007/s40195-025-01821-5","DOIUrl":null,"url":null,"abstract":"<div><p>Twinning-induced plasticity (TWIP) steel shows great potential in engineering due to its excellent strength and ductility synergy, and strengthening research on its corrosion resistance and high-temperature oxidation resistance is critical for broader applications. Herein, the effect of annealing temperature on the high-temperature oxidation and corrosion behavior of Fe–Mn–Cr–Al–Cu–C TWIP steel is investigated. The results show that increasing the annealing temperature from 700 °C to 1100 °C reduced the mass gain of the TWIP steel oxidized at 800 °C for 8 h from 1.93 to 0.58 mg·cm<sup>−2</sup>. Additionally, the self-corrosion current density decreases from 6.52 × 10<sup>−6</sup> to 1.32 × 10<sup>−6</sup> A·cm<sup>−2</sup>, while charge transfer resistance increases from 1461 to 3339 Ω·cm<sup>−2</sup>. The reduction in grain boundaries and dislocation density in the TWIP steel attributed to the increase in annealing temperature inhibits short-circuit diffusion, local galvanic corrosion and pitting, ultimately improving both oxidation and corrosion resistance. Moreover, high-temperature annealing prevents the formation of carbon-rich compounds and ensures uniform element distribution. The accumulation of Cu and Cu-rich products formed at the interface further protects against Cl<sup>−</sup> erosion, inhibiting pitting and local corrosion, thus enhancing the corrosion resistance of the TWIP steel.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"38 4","pages":"642 - 656"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-025-01821-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Twinning-induced plasticity (TWIP) steel shows great potential in engineering due to its excellent strength and ductility synergy, and strengthening research on its corrosion resistance and high-temperature oxidation resistance is critical for broader applications. Herein, the effect of annealing temperature on the high-temperature oxidation and corrosion behavior of Fe–Mn–Cr–Al–Cu–C TWIP steel is investigated. The results show that increasing the annealing temperature from 700 °C to 1100 °C reduced the mass gain of the TWIP steel oxidized at 800 °C for 8 h from 1.93 to 0.58 mg·cm−2. Additionally, the self-corrosion current density decreases from 6.52 × 10−6 to 1.32 × 10−6 A·cm−2, while charge transfer resistance increases from 1461 to 3339 Ω·cm−2. The reduction in grain boundaries and dislocation density in the TWIP steel attributed to the increase in annealing temperature inhibits short-circuit diffusion, local galvanic corrosion and pitting, ultimately improving both oxidation and corrosion resistance. Moreover, high-temperature annealing prevents the formation of carbon-rich compounds and ensures uniform element distribution. The accumulation of Cu and Cu-rich products formed at the interface further protects against Cl erosion, inhibiting pitting and local corrosion, thus enhancing the corrosion resistance of the TWIP steel.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过退火控制实现Fe-Mn-Cr-Al-Cu-C TWIP钢的高温抗氧化性和耐腐蚀性
孪生诱发塑性钢由于具有良好的强度和延性协同作用,在工程上显示出巨大的潜力,加强对其耐腐蚀和耐高温氧化性能的研究是其广泛应用的关键。本文研究了退火温度对Fe-Mn-Cr-Al-Cu-C TWIP钢高温氧化和腐蚀行为的影响。结果表明:将退火温度从700℃提高到1100℃,800℃氧化8 h的TWIP钢的质量增益从1.93 mg·cm−2降低到0.58 mg·cm−2;自腐蚀电流密度从6.52 × 10−6减小到1.32 × 10−6 A·cm−2,电荷转移电阻从1461增大到3339 Ω·cm−2。退火温度的升高使TWIP钢的晶界和位错密度减小,抑制了短路扩散、局部电偶腐蚀和点蚀,最终提高了抗氧化性和耐腐蚀性。此外,高温退火防止富碳化合物的形成,并确保均匀的元素分布。Cu和富Cu产物在界面处的积累进一步防止了Cl−的侵蚀,抑制了点蚀和局部腐蚀,从而提高了TWIP钢的耐蚀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Metallurgica Sinica-English Letters
Acta Metallurgica Sinica-English Letters METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.60
自引率
14.30%
发文量
122
审稿时长
2 months
期刊介绍: This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.
期刊最新文献
Role of Grain Boundary Segregation and Nanoprecipitation on the Tensile Properties and Thermal Stability of Dilute Mg–0.7Al–0.3Ca (wt%) Alloy Correction: Enhanced Hydrogen Embrittlement Resistance in a Vanadium-Alloyed 42CrNiMoV Steel for High-Strength Wind Turbine Bolts Dissolution Behaviors of Corrosion Products on 316LN Stainless Steel in Simulated Shutdown Acid-Reducing Water Chemistry Solute Segregation and Grain Boundary Cohesion of Magnesium Binary Alloys: A First-Principles Study Reinforcement Learning in Materials Science: Recent Advances, Methodologies and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1