The proxiome of a plant viral protein with dual targeting to mitochondria and chloroplasts revealed MAPK cascade and splicing components as proviral factors
María Sáiz-Bonilla, Yuanyuan Li, Christian Montes-Serey, Justin W. Walley, Savithramma P. Dinesh-Kumar, Vicente Pallás, Jose A. Navarro
{"title":"The proxiome of a plant viral protein with dual targeting to mitochondria and chloroplasts revealed MAPK cascade and splicing components as proviral factors","authors":"María Sáiz-Bonilla, Yuanyuan Li, Christian Montes-Serey, Justin W. Walley, Savithramma P. Dinesh-Kumar, Vicente Pallás, Jose A. Navarro","doi":"10.1111/tpj.70161","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The coat protein (CP) of the melon necrotic spot virus (MNSV) is a multifunctional factor localized in the chloroplast, mitochondria, and cytoplasm, playing a critical role in overcoming plant defenses such as RNA silencing (RNAi) and the necrotic hypersensitive response. However, the molecular mechanisms through which CP interferes with plant defenses remain unclear. Identifying viral–host interactors can reveal how viruses exploit fundamental cellular processes and help elucidate viral survival strategies. Here, we employed a TurboID-based proximity labeling approach to identify interactors of both the wild-type MNSV CP and a cytoplasmic CP mutant lacking the dual transit peptide (ΔNtCP). Of the interactors, eight were selected for silencing. Notably, silencing MAP4K SIK1 and NbMAP3Kε1 kinases, and a splicing factor homolog NbSMU2 significantly reduced MNSV accumulation, suggesting a proviral role for these proteins in plants. Yeast two-hybrid and bimolecular fluorescence complementation assays confirmed the CP and ΔNtCP interaction with NbSMU2 and NbMAP3Kε1 but not with NbSIK1, which interacted with NbMAP3Kε1. These findings open up new possibilities for exploring how MNSV CP might modulate gene expression and MAPK, thereby facilitating MNSV infection.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"122 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70161","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The coat protein (CP) of the melon necrotic spot virus (MNSV) is a multifunctional factor localized in the chloroplast, mitochondria, and cytoplasm, playing a critical role in overcoming plant defenses such as RNA silencing (RNAi) and the necrotic hypersensitive response. However, the molecular mechanisms through which CP interferes with plant defenses remain unclear. Identifying viral–host interactors can reveal how viruses exploit fundamental cellular processes and help elucidate viral survival strategies. Here, we employed a TurboID-based proximity labeling approach to identify interactors of both the wild-type MNSV CP and a cytoplasmic CP mutant lacking the dual transit peptide (ΔNtCP). Of the interactors, eight were selected for silencing. Notably, silencing MAP4K SIK1 and NbMAP3Kε1 kinases, and a splicing factor homolog NbSMU2 significantly reduced MNSV accumulation, suggesting a proviral role for these proteins in plants. Yeast two-hybrid and bimolecular fluorescence complementation assays confirmed the CP and ΔNtCP interaction with NbSMU2 and NbMAP3Kε1 but not with NbSIK1, which interacted with NbMAP3Kε1. These findings open up new possibilities for exploring how MNSV CP might modulate gene expression and MAPK, thereby facilitating MNSV infection.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.