TaLAC129 is a negative regulator of arbuscular mycorrhizal symbiosis but enhanced the growth and yield of bread wheat

IF 5.7 1区 生物学 Q1 PLANT SCIENCES The Plant Journal Pub Date : 2025-04-14 DOI:10.1111/tpj.70136
Xiong Zhong, Jing Hui, Hui Zhang, Qingdong Zeng, Dejun Han, Hui Tian
{"title":"TaLAC129 is a negative regulator of arbuscular mycorrhizal symbiosis but enhanced the growth and yield of bread wheat","authors":"Xiong Zhong,&nbsp;Jing Hui,&nbsp;Hui Zhang,&nbsp;Qingdong Zeng,&nbsp;Dejun Han,&nbsp;Hui Tian","doi":"10.1111/tpj.70136","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Arbuscular mycorrhizal (AM) symbiosis enhances nutrient acquisition and stress resilience in plants, yet the genetic mechanisms regulating this interaction in wheat remain poorly understood. This study explores the variation in AM colonization rates across a diverse set of wheat varieties and aims to identify key genes that regulate the wheat–AM symbiosis. Understanding these molecular mechanisms is crucial for improving nutrient uptake efficiency and stress resistance in wheat breeding programs. Here, we conducted a genome-wide association study (GWAS) of 291 wheat varieties and integrated transcriptomic data to identify <i>TaLAC129</i>, a laccase (<i>LAC</i>)-encoding gene, as a critical negative regulator of AM colonization in wheat roots. Overexpression of <i>TaLAC129</i> significantly increased root LAC activity and lignin content, concurrently suppressing AM colonization. While this suppression reduced nitrogen (N), phosphorus (P), and potassium (K) uptake in stems, leaves, and glumes, it markedly enhanced nutrient utilization efficiency (NUE) in grains. Furthermore, <i>TaLAC129</i> overexpression improved agronomic traits, including grains per panicle, 1000-grain weight, and overall yield. Our findings reveal the dual role of <i>TaLAC129</i> in balancing AM symbiosis and nutrient allocation, offering a novel genetic target for breeding wheat varieties with improved yield and nutrient efficiency. This study provides critical insights into the molecular coordination between symbiotic trade-offs and agricultural productivity in cereal crops.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"122 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70136","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Arbuscular mycorrhizal (AM) symbiosis enhances nutrient acquisition and stress resilience in plants, yet the genetic mechanisms regulating this interaction in wheat remain poorly understood. This study explores the variation in AM colonization rates across a diverse set of wheat varieties and aims to identify key genes that regulate the wheat–AM symbiosis. Understanding these molecular mechanisms is crucial for improving nutrient uptake efficiency and stress resistance in wheat breeding programs. Here, we conducted a genome-wide association study (GWAS) of 291 wheat varieties and integrated transcriptomic data to identify TaLAC129, a laccase (LAC)-encoding gene, as a critical negative regulator of AM colonization in wheat roots. Overexpression of TaLAC129 significantly increased root LAC activity and lignin content, concurrently suppressing AM colonization. While this suppression reduced nitrogen (N), phosphorus (P), and potassium (K) uptake in stems, leaves, and glumes, it markedly enhanced nutrient utilization efficiency (NUE) in grains. Furthermore, TaLAC129 overexpression improved agronomic traits, including grains per panicle, 1000-grain weight, and overall yield. Our findings reveal the dual role of TaLAC129 in balancing AM symbiosis and nutrient allocation, offering a novel genetic target for breeding wheat varieties with improved yield and nutrient efficiency. This study provides critical insights into the molecular coordination between symbiotic trade-offs and agricultural productivity in cereal crops.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TaLAC129对丛枝菌根共生具有负调控作用,但对面包小麦的生长和产量有促进作用
丛枝菌根(AM)共生可提高植物的养分获取能力和抗逆性,但人们对小麦中这种相互作用的遗传调控机制仍然知之甚少。本研究探讨了不同小麦品种中AM定殖率的变化,旨在找出调控小麦-AM共生的关键基因。了解这些分子机制对于提高小麦育种计划中的养分吸收效率和抗逆性至关重要。在此,我们对 291 个小麦品种进行了全基因组关联研究(GWAS),并整合了转录组数据,以确定漆酶(LAC)编码基因 TaLAC129 是小麦根部 AM 定殖的关键负调控因子。过表达 TaLAC129 能显著提高根部 LAC 活性和木质素含量,同时抑制 AM 的定殖。虽然这种抑制降低了小麦茎、叶和颖片对氮(N)、磷(P)和钾(K)的吸收,但却明显提高了籽粒的养分利用效率(NUE)。此外,TaLAC129 的过表达还改善了农艺性状,包括每穗粒数、千粒重和总产量。我们的研究结果揭示了 TaLAC129 在平衡 AM 共生和养分分配中的双重作用,为培育产量和养分效率更高的小麦品种提供了一个新的遗传目标。这项研究为谷类作物中共生权衡与农业生产力之间的分子协调提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Plant Journal
The Plant Journal 生物-植物科学
CiteScore
13.10
自引率
4.20%
发文量
415
审稿时长
2.3 months
期刊介绍: Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community. Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.
期刊最新文献
Regulation of vacuole fusion in stomata by dephosphorylation of the HOPS subunit VPS39 Decoding nitrogen uptake efficiency in maize and sorghum: insights from comparative gene regulatory networks Issue Information Insights into salt adaptation from comparative genomics of Scirpus mariqueter and a related freshwater species EucaMOD: a comprehensive multi-omics database for functional genomics research and molecular breeding of fast-growing eucalyptus trees
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1