Understanding the Metal-Center Mediated Adsorption and Redox Mechanisms in a FeMn(NbTa)2O6 Columbite Material for Anion Exchange Membrane Water Electrolyzers

IF 26 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2025-04-15 DOI:10.1002/aenm.202404479
Patrick M. Bacirhonde, Devendra Shrestha, Kyoungin Kang, Esensil Man Hia, Nikhil Komalla, Nelson Y. Dzade, Merve Buldu-Akturk, Michelle P. Browne, Milan Babu Poudel, Dong Jin Yoo, Eun-Suk Jeong, Ahmed Yousef Mohamed, Byoung Gun Han, Deok-Yong Cho, Matthew T. Curnan, Geun Ho Gu, Jeong Woo Han, Chan Hee Park
{"title":"Understanding the Metal-Center Mediated Adsorption and Redox Mechanisms in a FeMn(NbTa)2O6 Columbite Material for Anion Exchange Membrane Water Electrolyzers","authors":"Patrick M. Bacirhonde,&nbsp;Devendra Shrestha,&nbsp;Kyoungin Kang,&nbsp;Esensil Man Hia,&nbsp;Nikhil Komalla,&nbsp;Nelson Y. Dzade,&nbsp;Merve Buldu-Akturk,&nbsp;Michelle P. Browne,&nbsp;Milan Babu Poudel,&nbsp;Dong Jin Yoo,&nbsp;Eun-Suk Jeong,&nbsp;Ahmed Yousef Mohamed,&nbsp;Byoung Gun Han,&nbsp;Deok-Yong Cho,&nbsp;Matthew T. Curnan,&nbsp;Geun Ho Gu,&nbsp;Jeong Woo Han,&nbsp;Chan Hee Park","doi":"10.1002/aenm.202404479","DOIUrl":null,"url":null,"abstract":"<p>The rising demand for sustainable green hydrogen production necessitates efficient and cost-effective water-splitting electrocatalysts. Inspired by the catalytic activities of columbite-tantalite, this study combines a scalable cutting-edge synthesis approach with atomic-level structures and metal-center-mediated mechanisms to unravel its operational performance and stability. Using ad in situ X-ray absorption fine structure combined with Density Functional Theory (DFT), the results reveal distinctive valence band peaks and moderate charge transfer from Mn and Fe sites, enabling stable adsorption and reduced activation barriers. In contrast, the high-valence Nb and Ta centers at the B-sites promote favorable <i>d</i>-band alignment, enhancing orbital overlap with oxygen <i>p-</i>orbitals. This facilites electronic delocalization, lowers charge accumulation, and reduces activation barriers of intermediates species. Fe and Mn at the A-sites exhibit strong redox reactivity and optimal adsorption for OH* and O*, supporting efficient electron fransfers. Solvation effects modeled via VASPsol further stabilize key intermediates, especially O*, reducing the energy barrier for water dissociation. Notably, FeMn(NbTa)<sub>2</sub>O<sub>6</sub>-columbite catalysts stand out with a cell voltage of 1.81 V at a current density of 700 mA cm<sup>−2</sup>, compared to 40% Pt/C-RuO₂ (1.75 V) at the same current density in the anion exchange membrane water electrolyzer (AEMWE). Also, the FeMn(NbTa)<sub>2</sub>O<sub>6</sub>-columbite exhibits long-term stability at 800 mA cm<sup>−2</sup>, surpassing the benchmark 40% Pt Vulcan-RuO<sub>2</sub> after 200 h in AEMWE. This work significantly advances current research and establishes a design rule for selecting metal compositions in the development of advanced electrocatalysts in alkaline water electrolyzers.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"15 24","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aenm.202404479","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aenm.202404479","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rising demand for sustainable green hydrogen production necessitates efficient and cost-effective water-splitting electrocatalysts. Inspired by the catalytic activities of columbite-tantalite, this study combines a scalable cutting-edge synthesis approach with atomic-level structures and metal-center-mediated mechanisms to unravel its operational performance and stability. Using ad in situ X-ray absorption fine structure combined with Density Functional Theory (DFT), the results reveal distinctive valence band peaks and moderate charge transfer from Mn and Fe sites, enabling stable adsorption and reduced activation barriers. In contrast, the high-valence Nb and Ta centers at the B-sites promote favorable d-band alignment, enhancing orbital overlap with oxygen p-orbitals. This facilites electronic delocalization, lowers charge accumulation, and reduces activation barriers of intermediates species. Fe and Mn at the A-sites exhibit strong redox reactivity and optimal adsorption for OH* and O*, supporting efficient electron fransfers. Solvation effects modeled via VASPsol further stabilize key intermediates, especially O*, reducing the energy barrier for water dissociation. Notably, FeMn(NbTa)2O6-columbite catalysts stand out with a cell voltage of 1.81 V at a current density of 700 mA cm−2, compared to 40% Pt/C-RuO₂ (1.75 V) at the same current density in the anion exchange membrane water electrolyzer (AEMWE). Also, the FeMn(NbTa)2O6-columbite exhibits long-term stability at 800 mA cm−2, surpassing the benchmark 40% Pt Vulcan-RuO2 after 200 h in AEMWE. This work significantly advances current research and establishes a design rule for selecting metal compositions in the development of advanced electrocatalysts in alkaline water electrolyzers.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阴离子交换膜水电解槽用FeMn(NbTa)2O6柱状材料金属中心吸附和氧化还原机制的研究
对可持续绿色制氢的需求不断增长,需要高效、经济的水分解电催化剂。受铌钽矿催化活性的启发,本研究将可扩展的尖端合成方法与原子水平结构和金属中心介导机制相结合,以揭示其操作性能和稳定性。利用原位x射线吸收精细结构结合密度泛函理论(DFT),结果显示出独特的价带峰和Mn和Fe位点的适度电荷转移,从而实现稳定的吸附和降低的激活势垒。相反,b位的高价Nb和Ta中心促进了有利的d波段排列,增强了与氧p轨道的重叠。这有利于电子离域,降低电荷积累,降低中间产物的激活障碍。a位的Fe和Mn表现出很强的氧化还原活性,对OH*和O*具有最佳的吸附能力,支持有效的电子转移。通过VASPsol模拟的溶剂化效应进一步稳定了关键中间体,特别是O*,降低了水解离的能量屏障。值得注意的是,在700 mA cm−2电流密度下,FeMn(NbTa) 2o6 -柱状石催化剂的电池电压为1.81 V,而在相同电流密度的阴离子交换膜水电解槽(AEMWE)中,40% Pt/C-RuO₂(1.75 V)的电池电压为1.81 V。FeMn(NbTa) 2o6柱状体在800 mA cm−2下表现出长期稳定性,在AEMWE中200 h后超过基准的40% Pt Vulcan-RuO2。这项工作对目前的研究有很大的推动作用,并为在碱性水电解槽中开发先进电催化剂时选择金属成分建立了设计规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Particulate Static Effect Induced Electricity Generation Inspired by Tesla Turbine Dual‐Pathway Chloride Suppression Enables Stable Industrial‐Scale Anion Exchange Membrane Seawater Electrolysis Pre‐Leached Sacrificial Heterojunction Enables Sustaining Industrial‐Grade Water Electrolysis Atomic‐Scale Ru Skin Propels Alkaline Hydrogen Fuel Cells Dual‐Channel σ‐Donation/π‐Backdonation‐Driven ‐p‐p‐ Coupling in Calcium Dual‐Atom Catalysts Enables Accelerated ORR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1