SnS2(001)-Reinforced Ion/Molecular Sieving Separator Enables High-Performance Aqueous Zinc-Organic Batteries

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-04-15 DOI:10.1002/adfm.202501468
Lijuan Hai, Ying Sun, Miaomiao Wu, Zhibo Liu, Yong Guo, Xingchao Wang, Jixi Guo, Dianzeng Jia
{"title":"SnS2(001)-Reinforced Ion/Molecular Sieving Separator Enables High-Performance Aqueous Zinc-Organic Batteries","authors":"Lijuan Hai,&nbsp;Ying Sun,&nbsp;Miaomiao Wu,&nbsp;Zhibo Liu,&nbsp;Yong Guo,&nbsp;Xingchao Wang,&nbsp;Jixi Guo,&nbsp;Dianzeng Jia","doi":"10.1002/adfm.202501468","DOIUrl":null,"url":null,"abstract":"<p>Challenges including dendrite growth on Zn anodes and organic cathode dissolution severely hinder the practical application of aqueous zinc-organic batteries (AZOBs). Herein, a Janus separator engineered by anchoring SnS<sub>2</sub>(001) nanosheets onto glass fiber (SnS<sub>2</sub>(001)@GF) to tackle these issues is prsented. The (001) plane orientation of SnS<sub>2</sub>, compared to the (100) crystal plane, features reduced binding energy with Zn<sup>2+</sup> and lower work function, enhancing Zn<sup>2+</sup> ion diffusion, creating uniform electric field and ion concentration, and enabling preferential deposition of Zn<sup>2+</sup> along the (002) direction with rapid kinetics, while concurrently repelling SO<sub>4</sub><sup>2−</sup> ions through electrostatic repulsion. Additionally, the hierarchical stacking properties of SnS<sub>2</sub>(001) mitigate the shuttling of organic cathodes. With this Janus separator, a robust SEI layer of ZnS, Zn<sub>5</sub>Sn<sub>4</sub>, and Zn<sub>7</sub>Sn<sub>4</sub> forms on the Zn surface, further inhibiting Zn dendrites and byproduct formation. The Zn//Zn cell exhibits stable cyclability exceeding 2100 h at 1 mA cm<sup>−2</sup> and 1 mAh cm<sup>−2</sup>. The Zn//bipolar organic molecular cathinone (IDT) full battery achieves stable electrochemical behavior over 2250 cycles at 10 A g<sup>−1</sup>, with 100% capacity retention after 850 cycles at a mass loading of 17 mg cm<sup>−1</sup>. Other full batteries utilizing dibenzo[b,i]thianthrene-5,7,12,14–tetraone (DTT) and 5,7,12,14–pentacenetetrone (PT) respectively demonstrate significantly enhanced electrochemical performance.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 38","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202501468","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Challenges including dendrite growth on Zn anodes and organic cathode dissolution severely hinder the practical application of aqueous zinc-organic batteries (AZOBs). Herein, a Janus separator engineered by anchoring SnS2(001) nanosheets onto glass fiber (SnS2(001)@GF) to tackle these issues is prsented. The (001) plane orientation of SnS2, compared to the (100) crystal plane, features reduced binding energy with Zn2+ and lower work function, enhancing Zn2+ ion diffusion, creating uniform electric field and ion concentration, and enabling preferential deposition of Zn2+ along the (002) direction with rapid kinetics, while concurrently repelling SO42− ions through electrostatic repulsion. Additionally, the hierarchical stacking properties of SnS2(001) mitigate the shuttling of organic cathodes. With this Janus separator, a robust SEI layer of ZnS, Zn5Sn4, and Zn7Sn4 forms on the Zn surface, further inhibiting Zn dendrites and byproduct formation. The Zn//Zn cell exhibits stable cyclability exceeding 2100 h at 1 mA cm−2 and 1 mAh cm−2. The Zn//bipolar organic molecular cathinone (IDT) full battery achieves stable electrochemical behavior over 2250 cycles at 10 A g−1, with 100% capacity retention after 850 cycles at a mass loading of 17 mg cm−1. Other full batteries utilizing dibenzo[b,i]thianthrene-5,7,12,14–tetraone (DTT) and 5,7,12,14–pentacenetetrone (PT) respectively demonstrate significantly enhanced electrochemical performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SnS2(001)增强型离子/分子筛分分离器可实现高性能水性锌-有机电池
锌阳极枝晶生长和有机阴极溶解等问题严重阻碍了水基锌有机电池的实际应用。本文提出了一种将SnS2(001)纳米片锚定在玻璃纤维(SnS2(001)@GF)上的Janus分离器来解决这些问题。与(100)晶面相比,SnS2的(001)面取向降低了与Zn2+的束缚能,降低了功函数,增强了Zn2+离子的扩散,形成了均匀的电场和离子浓度,使Zn2+沿(002)方向以快速动力学的方式优先沉积,同时通过静电斥力排斥SO42−离子。此外,SnS2(001)的层叠特性减轻了有机阴极的穿梭。使用这种Janus分离器,在Zn表面形成了一层坚固的由ZnS、Zn5Sn4和Zn7Sn4组成的SEI层,进一步抑制了Zn枝晶和副产物的形成。锌/锌电池在1ma cm - 2和1mah cm - 2下具有超过2100小时的稳定可循环性。锌//双极有机分子卡西酮(IDT)全电池在10 A g−1下可在2250次循环中获得稳定的电化学行为,在17 mg cm−1的质量负载下可在850次循环后保持100%的容量。其他使用二苯并[b,i]噻吩-5,7,12,14 -四酮(DTT)和5,7,12,14 -五碳四酮(PT)的全电池分别表现出显著提高的电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Super‐Stable Triphase Nanostructured NiTi for Elastocaloric Heat Pump A High‐Areal‐Capacity and Long‐Cycle‐Life Zinc‐Ion Battery with Robust V 2 O 3 @Graphene Microlattice Cathode and Interface‐Protected Zn Anode Single‐Layer Gradient MXene Aerogels via a Facile Gravity‐Assisted Assembly Strategy for High‐Performance Broadband Multispectral Camouflage Trisilyl‐Functionalized Metal–Organic Framework Nanocrystallites for Synergistic Ultrafast Ppb‐Level Detection of Antibiotics and Organic Explosives Atomic Environment Engineering of Cobalt Single Atom‐Nanocluster Synergistic Sites on Nitrogen‐Doped MXene for Bidirectional Sulfur Electrocatalysis and Uniform Lithium Deposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1