Phase change composites enhanced by gold nanorods decorated MXene for efficient photothermal conversion and storage

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2025-04-15 DOI:10.1016/j.solmat.2025.113647
Ruijin Fan , Guanwang Chen , Nianben Zheng , Zhiqiang Sun
{"title":"Phase change composites enhanced by gold nanorods decorated MXene for efficient photothermal conversion and storage","authors":"Ruijin Fan ,&nbsp;Guanwang Chen ,&nbsp;Nianben Zheng ,&nbsp;Zhiqiang Sun","doi":"10.1016/j.solmat.2025.113647","DOIUrl":null,"url":null,"abstract":"<div><div>Gold nanorods (AuNRs)-doped phase change materials (PCMs) hold great promise for alleviating the instability and imbalance of solar energy due to their exceptional energy storage density and adaptability. However, their poor full-spectrum light absorption and inferior stability lead to insufficient photothermal conversion efficiency. Herein, we devise functional PCMs with synergistic reinforcement of light absorption and photothermal conversion through the in-situ growth of AuNRs on the MXene surface. The results indicate that the bimodal resonance effect of AuNRs and broad-spectrum absorption of MXene synergistically endow a 29.7 % increase in light absorption efficiencies over the pristine composites, which is superior to the sum of the two individually doped phase change composites (PCCs). Similarly, the photothermal storage and conversion efficiencies of the AuNRs/MXene-doped PCC are significantly enhanced by 36.6 % and 78.4 %, respectively. Furthermore, the fluorescence analysis reveals a prolonged fluorescence lifetime of 1.91 ns and a low quantum yield of 0.27 %, demonstrating efficient separation and migration of light-induced carriers and thermal dissipation via non-radiative relaxation, which is because the AuNRs and MXene synergistically enhance the localized surface plasmon resonance effect and the spectral absorption bands. This work offers fresh perspectives on the development of advanced photothermal PCMs for efficient solar thermal applications.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"288 ","pages":"Article 113647"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092702482500248X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Gold nanorods (AuNRs)-doped phase change materials (PCMs) hold great promise for alleviating the instability and imbalance of solar energy due to their exceptional energy storage density and adaptability. However, their poor full-spectrum light absorption and inferior stability lead to insufficient photothermal conversion efficiency. Herein, we devise functional PCMs with synergistic reinforcement of light absorption and photothermal conversion through the in-situ growth of AuNRs on the MXene surface. The results indicate that the bimodal resonance effect of AuNRs and broad-spectrum absorption of MXene synergistically endow a 29.7 % increase in light absorption efficiencies over the pristine composites, which is superior to the sum of the two individually doped phase change composites (PCCs). Similarly, the photothermal storage and conversion efficiencies of the AuNRs/MXene-doped PCC are significantly enhanced by 36.6 % and 78.4 %, respectively. Furthermore, the fluorescence analysis reveals a prolonged fluorescence lifetime of 1.91 ns and a low quantum yield of 0.27 %, demonstrating efficient separation and migration of light-induced carriers and thermal dissipation via non-radiative relaxation, which is because the AuNRs and MXene synergistically enhance the localized surface plasmon resonance effect and the spectral absorption bands. This work offers fresh perspectives on the development of advanced photothermal PCMs for efficient solar thermal applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金纳米棒修饰MXene增强相变复合材料用于高效光热转换和存储
掺杂金纳米棒(AuNRs)的相变材料(PCMs)因其优异的储能密度和适应性,在缓解太阳能的不稳定性和不平衡性方面大有可为。然而,其全光谱光吸收性差、稳定性低,导致光热转换效率不足。在此,我们通过在 MXene 表面原位生长 AuNRs,设计出了具有协同增强光吸收和光热转换功能的功能性 PCM。结果表明,AuNRs 的双模共振效应和 MXene 的广谱吸收协同作用,使光吸收效率比原始复合材料提高了 29.7%,优于两种单独掺杂的相变复合材料之和。同样,掺杂 AuNRs/MXene 的 PCC 的光热存储和转换效率也显著提高,分别提高了 36.6% 和 78.4%。此外,荧光分析表明,荧光寿命长达 1.91 ns,量子产率低至 0.27%,这表明光诱导载流子的分离和迁移以及通过非辐射弛豫进行的热耗散非常有效,这是因为 AuNRs 和 MXene 协同增强了局部表面等离子体共振效应和光谱吸收带。这项工作为开发先进的光热 PCM 以实现高效太阳能热应用提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Improved interface passivation in high-efficiency Se-alloyed CdTe solar cells using a SnO2/ZnO n-type bilayer Improving performance of Cu2ZnSn(S,Se)4 solar cell by regulating S-to-Se substitution controlled nucleation and cation-redistribution of Cu2ZnSn(S,Se)4 film Epi-textured ITO layer as dynamic controller for plasmonic electrochromic smart windows Phase change material-integrated Janus fabric with radiative cooling/solar heating for adaptive thermal management In-situ n-type doping by screen-printed aluminum paste for back contact silicon solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1