Tuning nanostructured Ni-Nb metallic glass thin films by atomic fluence in magnetron sputtering

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Nano Pub Date : 2025-04-08 DOI:10.1016/j.mtnano.2025.100616
L.B. Lv , W.S. Chae , Q.P. Cao , X.D. Wang , S.Q. Ding , D.X. Zhang , A. Caron , J.Z. Jiang
{"title":"Tuning nanostructured Ni-Nb metallic glass thin films by atomic fluence in magnetron sputtering","authors":"L.B. Lv ,&nbsp;W.S. Chae ,&nbsp;Q.P. Cao ,&nbsp;X.D. Wang ,&nbsp;S.Q. Ding ,&nbsp;D.X. Zhang ,&nbsp;A. Caron ,&nbsp;J.Z. Jiang","doi":"10.1016/j.mtnano.2025.100616","DOIUrl":null,"url":null,"abstract":"<div><div>Structure heterogeneity was demonstrated to be the key factor in determining material properties with respect to relatively uniform ones. Here, we reported a deposition power-related nanostructure modulation in magnetron sputtering Ni-Nb metallic glass thin films (MGTFs). With increasing deposition power from 15 W to 120 W, the deposition rate increases from ∼15.3 nm/min to ∼183.6 nm/min. Cauliflower-like morphology gradually changed to randomly distributed nanogranular particles, and the mechanical properties showed remarkable improvement by ∼37 % in nanoindentation hardness, ∼146 % in lateral tensile fracture strength, ∼56 % in micro-pillar compression yielding strength, as well as better wear-resistance and thermal stability. Higher deposition power possesses a larger deposited atom fluence onto the film surface, transferring more kinetic energy per unit time and possibly increasing the substrate temperature. The enhanced adatoms migration facilitated the formation of dense nanocolumn interfaces, resulting in improved mechanical properties. These results uncover the intrinsic relationship between nanostructured morphology and mechanical properties of MGTFs, and can serve as a reference for optimizing the properties of vapor-deposited MGTFs by deposition power.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"30 ","pages":"Article 100616"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842025000471","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Structure heterogeneity was demonstrated to be the key factor in determining material properties with respect to relatively uniform ones. Here, we reported a deposition power-related nanostructure modulation in magnetron sputtering Ni-Nb metallic glass thin films (MGTFs). With increasing deposition power from 15 W to 120 W, the deposition rate increases from ∼15.3 nm/min to ∼183.6 nm/min. Cauliflower-like morphology gradually changed to randomly distributed nanogranular particles, and the mechanical properties showed remarkable improvement by ∼37 % in nanoindentation hardness, ∼146 % in lateral tensile fracture strength, ∼56 % in micro-pillar compression yielding strength, as well as better wear-resistance and thermal stability. Higher deposition power possesses a larger deposited atom fluence onto the film surface, transferring more kinetic energy per unit time and possibly increasing the substrate temperature. The enhanced adatoms migration facilitated the formation of dense nanocolumn interfaces, resulting in improved mechanical properties. These results uncover the intrinsic relationship between nanostructured morphology and mechanical properties of MGTFs, and can serve as a reference for optimizing the properties of vapor-deposited MGTFs by deposition power.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用磁控溅射中的原子通量调整纳米结构的镍铌金属玻璃薄膜
相对于相对均匀的材料性能,结构非均质性是决定材料性能的关键因素。本文报道了磁控溅射Ni-Nb金属玻璃薄膜(MGTFs)中沉积功率相关的纳米结构调制。随着沉积功率从15 W增加到120 W,沉积速率从~ 15.3 nm/min增加到~ 183.6 nm/min。花椰菜状形貌逐渐转变为随机分布的纳米颗粒状颗粒,力学性能显著提高,纳米压痕硬度提高~ 37%,横向拉伸断裂强度提高~ 146%,微柱压缩屈服强度提高~ 56%,并且具有更好的耐磨性和热稳定性。较高的沉积功率使沉积原子对薄膜表面的影响更大,单位时间内传递更多的动能,并可能提高衬底温度。吸附原子迁移的增强促进了致密纳米柱界面的形成,从而提高了材料的力学性能。这些结果揭示了MGTFs的纳米结构形态与力学性能之间的内在关系,可为通过沉积功率优化气相沉积MGTFs的性能提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
期刊最新文献
Hollow core-shell nanorods S-scheme heterojunctions with gradient sulfur vacancies toward optimized photocatalytic performance Applications of adsorption microcalorimetry in heterogeneous catalysis Study on the influence of different pattern structures and densities of AlN substrates on the crystalline quality of GaN epitaxial thin films based on molecular dynamics simulation Ultra-low-temperature sintering of TiO2 via grain boundary diffusion enabled by nanosecond laser irradiation Enhancing the accuracy of atomic force microscopy measurements of Young’s modulus via force-curve-informed tip geometry fitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1