The regulatory role of the nuclear scaffold protein Emerin on the migration of amniotic epithelial cells and oxidative stress in a pressure environment
Ludan Xu , Haiyang Ma , Xingqi Yin , Ningning Pan , Yonghong Wang , Dawei Wen , Zhiyuan Wang , Yang Liu , Junmei Fan , Meiwen An
{"title":"The regulatory role of the nuclear scaffold protein Emerin on the migration of amniotic epithelial cells and oxidative stress in a pressure environment","authors":"Ludan Xu , Haiyang Ma , Xingqi Yin , Ningning Pan , Yonghong Wang , Dawei Wen , Zhiyuan Wang , Yang Liu , Junmei Fan , Meiwen An","doi":"10.1016/j.placenta.2025.04.010","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Preterm premature rupture of membranes (PPROM) significantly increases perinatal fetal mortality and neonatal morbidity. During PPROM progression, excessive amniotic fluid pressure accompanies oxidative stress (OS). The migration of amniotic epithelial cells (AECs) is crucial for PPROM repair. Cell migration and mechanotransduction are regulated by the nuclear skeleton protein Emerin. However, the effects of Emerin on fetal membrane healing, OS and nuclear signal transduction in a mechanical environment remain unknown.</div></div><div><h3>Method</h3><div>The AECs were subjected to hydrostatic pressures of 4 kPa (moderate) and 9 kPa (excessive), with 0 kPa serving as the control group. A series of experiments, including CCK-8 assay, ROS detection, RT-qPCR, and siRNA interference, were performed to investigate the potential role of Emerin in fetal membrane repair under pressure stimulation.</div></div><div><h3>Results</h3><div>Moderate pressure stimulation promoted the proliferation and migration of AECs, while excessive mechanical stimulation had an inhibitory effect. Pressure stimulation increased the intracellular ROS levels, and this effect was pressure-dependent. Pressure could regulate the expression of Emerin, thereby influencing nuclear deformation. When Emerin was knocked down, it caused nuclear retraction and enhanced nuclear deformation ability, promoting the migration and proliferation of AECs. Furthermore, knockdown of Emerin suppressed ROS production and rescued the cellular OS levels, which may occur through the activation of the Nrf2 signaling pathway.</div></div><div><h3>Discussion</h3><div>This study demonstrates the critical role of Emerin in regulating AECs migration and OS under pressure stimulation, suggesting its potential as a therapeutic target for PPROM repair.</div></div>","PeriodicalId":20203,"journal":{"name":"Placenta","volume":"165 ","pages":"Pages 102-113"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Placenta","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143400425001122","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Preterm premature rupture of membranes (PPROM) significantly increases perinatal fetal mortality and neonatal morbidity. During PPROM progression, excessive amniotic fluid pressure accompanies oxidative stress (OS). The migration of amniotic epithelial cells (AECs) is crucial for PPROM repair. Cell migration and mechanotransduction are regulated by the nuclear skeleton protein Emerin. However, the effects of Emerin on fetal membrane healing, OS and nuclear signal transduction in a mechanical environment remain unknown.
Method
The AECs were subjected to hydrostatic pressures of 4 kPa (moderate) and 9 kPa (excessive), with 0 kPa serving as the control group. A series of experiments, including CCK-8 assay, ROS detection, RT-qPCR, and siRNA interference, were performed to investigate the potential role of Emerin in fetal membrane repair under pressure stimulation.
Results
Moderate pressure stimulation promoted the proliferation and migration of AECs, while excessive mechanical stimulation had an inhibitory effect. Pressure stimulation increased the intracellular ROS levels, and this effect was pressure-dependent. Pressure could regulate the expression of Emerin, thereby influencing nuclear deformation. When Emerin was knocked down, it caused nuclear retraction and enhanced nuclear deformation ability, promoting the migration and proliferation of AECs. Furthermore, knockdown of Emerin suppressed ROS production and rescued the cellular OS levels, which may occur through the activation of the Nrf2 signaling pathway.
Discussion
This study demonstrates the critical role of Emerin in regulating AECs migration and OS under pressure stimulation, suggesting its potential as a therapeutic target for PPROM repair.
期刊介绍:
Placenta publishes high-quality original articles and invited topical reviews on all aspects of human and animal placentation, and the interactions between the mother, the placenta and fetal development. Topics covered include evolution, development, genetics and epigenetics, stem cells, metabolism, transport, immunology, pathology, pharmacology, cell and molecular biology, and developmental programming. The Editors welcome studies on implantation and the endometrium, comparative placentation, the uterine and umbilical circulations, the relationship between fetal and placental development, clinical aspects of altered placental development or function, the placental membranes, the influence of paternal factors on placental development or function, and the assessment of biomarkers of placental disorders.