Optimizing thermophotovoltaic (TPV) systems through photon fate analysis: An experimental case study based on ellipsoidal optical cavities

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2025-04-17 DOI:10.1016/j.solmat.2025.113634
Nima Talebzadeh, Shahriar Homaei, Paul G. O'Brien
{"title":"Optimizing thermophotovoltaic (TPV) systems through photon fate analysis: An experimental case study based on ellipsoidal optical cavities","authors":"Nima Talebzadeh,&nbsp;Shahriar Homaei,&nbsp;Paul G. O'Brien","doi":"10.1016/j.solmat.2025.113634","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a comprehensive photon fate framework for thermophotovoltaic (TPV) systems, integrating both numerical and experimental approaches to optimize performance through photon recycling, for different photovoltaic (PV) cells (Si, GaSb, and InGaAsSb). A quantitative analysis of optimal recycling factors reveals their strong dependence on power levels, view factor losses, and PV cell type. Results show lower emitter input power necessitates higher recycling factors for optimal performance. In an InGaAsSb-based TPV system with an emitter input power of 10 W/cm<sup>2</sup>, the maximum electrical output power is <em>P</em><sub><em>elc</em></sub> = 2.4 W/cm<sup>2</sup> (for view factor loss <em>F</em><sub><em>VF-loss</em></sub> = 1 %), 1.63 W/cm<sup>2</sup> (<em>F</em><sub><em>VF-loss</em></sub> = 5 %), and 0.87 W/cm<sup>2</sup> (<em>F</em><sub><em>VF-loss</em></sub> = 20 %), corresponding to optimal photon recycling factors of <em>F</em><sub><em>rec</em></sub> = 92 %, 79 %, and 44 %, respectively. Experimental validation is achieved using a TPV system with a novel ellipsoidal optical cavity configuration featuring silver-coated annular rings with tunable width-to-diameter ratios (<em>ω/a</em> = 0, 0.2, 0.4, 0.6, 0.8) to precisely control photon recycling factors from <em>F</em><sub><em>rec</em></sub> = 0 to <em>F</em><sub><em>rec</em></sub> = 0.735. The impact of temperature-dependent recycling effectiveness is analyzed, demonstrating enhancement factors up to ∼210 times at low-temperature operation and ∼80 times at higher temperatures. These results provide insights into operating temperature strategies and establish a practical design framework for optimizing TPV systems. Furthermore, the findings serve as a valuable tool for system-level trade-offs, offering guidance for maximizing efficiency based on system constraints. This work lays the foundation for next-generation TPV system designs, advancing the integration of photon management strategies for high-performance energy conversion.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"288 ","pages":"Article 113634"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825002351","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a comprehensive photon fate framework for thermophotovoltaic (TPV) systems, integrating both numerical and experimental approaches to optimize performance through photon recycling, for different photovoltaic (PV) cells (Si, GaSb, and InGaAsSb). A quantitative analysis of optimal recycling factors reveals their strong dependence on power levels, view factor losses, and PV cell type. Results show lower emitter input power necessitates higher recycling factors for optimal performance. In an InGaAsSb-based TPV system with an emitter input power of 10 W/cm2, the maximum electrical output power is Pelc = 2.4 W/cm2 (for view factor loss FVF-loss = 1 %), 1.63 W/cm2 (FVF-loss = 5 %), and 0.87 W/cm2 (FVF-loss = 20 %), corresponding to optimal photon recycling factors of Frec = 92 %, 79 %, and 44 %, respectively. Experimental validation is achieved using a TPV system with a novel ellipsoidal optical cavity configuration featuring silver-coated annular rings with tunable width-to-diameter ratios (ω/a = 0, 0.2, 0.4, 0.6, 0.8) to precisely control photon recycling factors from Frec = 0 to Frec = 0.735. The impact of temperature-dependent recycling effectiveness is analyzed, demonstrating enhancement factors up to ∼210 times at low-temperature operation and ∼80 times at higher temperatures. These results provide insights into operating temperature strategies and establish a practical design framework for optimizing TPV systems. Furthermore, the findings serve as a valuable tool for system-level trade-offs, offering guidance for maximizing efficiency based on system constraints. This work lays the foundation for next-generation TPV system designs, advancing the integration of photon management strategies for high-performance energy conversion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用光子命运分析优化热光伏系统:基于椭球光学腔的实验案例研究
本研究提出了热光伏(TPV)系统的综合光子命运框架,整合了数值和实验方法,通过光子回收优化不同光伏(PV)电池(Si, GaSb和InGaAsSb)的性能。对最佳回收因子的定量分析表明,它们与功率水平、视图因子损失和光伏电池类型有很大的关系。结果表明,较低的发射极输入功率需要较高的循环系数才能获得最佳性能。在发射器输入功率为10 W/cm2的ingaassb TPV系统中,最大电输出功率为Pelc = 2.4 W/cm2(视场因子损耗fvf -损耗= 1%)、1.63 W/cm2 (fvf -损耗= 5%)和0.87 W/cm2 (fvf -损耗= 20%),对应的最佳光子回收因子Frec分别为92%、79%和44%。实验验证采用新型椭球形光学腔结构的TPV系统,该系统具有可调宽径比(ω/a = 0,0.2, 0.4, 0.6, 0.8)的镀银环形环,可以精确控制光子回收因子从Frec = 0到Frec = 0.735。分析了温度依赖性回收效率的影响,证明了在低温操作下提高系数高达~ 210倍,在高温下提高系数高达~ 80倍。这些结果为工作温度策略提供了见解,并为优化TPV系统建立了实用的设计框架。此外,这些发现可以作为系统级权衡的有价值的工具,为基于系统约束的效率最大化提供指导。这项工作为下一代TPV系统设计奠定了基础,推进了高性能能量转换光子管理策略的集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Preparation and performance study of NaCl-Na2SO4-basalt composite solid heat storage material based on industrial waste salt Grafting engineering of ZIF-8 and polymer to enhance performance of gel electrolyte in electrochromic devices Improved interface passivation in high-efficiency Se-alloyed CdTe solar cells using a SnO2/ZnO n-type bilayer Improving performance of Cu2ZnSn(S,Se)4 solar cell by regulating S-to-Se substitution controlled nucleation and cation-redistribution of Cu2ZnSn(S,Se)4 film Epi-textured ITO layer as dynamic controller for plasmonic electrochromic smart windows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1