Nano-foam gold-modified diamond electrochemical aptasensing platform for ultrasensitive monitoring of 17β-estradiol†

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY RSC Advances Pub Date : 2025-04-17 DOI:10.1039/D5RA01318F
Yu Wang, Yibo Ma, Xiaowei Dai, Jia Li, Jian Zhang, Hongyu Jiang, Maofeng Wang and Shenglong Yu
{"title":"Nano-foam gold-modified diamond electrochemical aptasensing platform for ultrasensitive monitoring of 17β-estradiol†","authors":"Yu Wang, Yibo Ma, Xiaowei Dai, Jia Li, Jian Zhang, Hongyu Jiang, Maofeng Wang and Shenglong Yu","doi":"10.1039/D5RA01318F","DOIUrl":null,"url":null,"abstract":"<p >This study developed a nano-foam gold modified boron-doped diamond (NFG/BDD-Apt) electrochemical aptasensor through a synergistic electrodeposition-dealloying strategy combined with aptamer functionalization for detecting 17β-estradiol (E2) in aquatic environments. The NFG/BDD-Apt sensor was systematically characterized using SEM, Raman, and EIS to elucidate its surface morphology, molecular structure, and electrochemical properties. SEM analysis revealed the successful formation of a homogeneous three-dimensional porous NFG structure on the BDD surface, which significantly enhanced the specific surface area (1.9-fold increase <em>vs.</em> bare BDD) and electron transfer efficiency. Electrochemical performance evaluation through CV and DPV demonstrated superior E2 detection capabilities. Under optimized conditions, the sensor exhibited a wide linear response range from 1.0 × 10<small><sup>−14</sup></small> to 1.0 × 10<small><sup>−8</sup></small> mol L<small><sup>−1</sup></small> (<em>R</em><small><sup>2</sup></small> = 0.997) with an ultralow detection limit of 1.8 × 10<small><sup>−15</sup></small> mol L<small><sup>−1</sup></small> (S/N = 3). NFG/BDD-Apt demonstrated exceptional selectivity (&gt;92% specificity against common interferents) and long-term stability. This work provides a novel sensing platform combining diamond electrode advantages with nanostructured amplification effects, offering significant potential for rapid and reliable monitoring of endocrine disruptors in environmental water systems.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 16","pages":" 12291-12297"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra01318f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra01318f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study developed a nano-foam gold modified boron-doped diamond (NFG/BDD-Apt) electrochemical aptasensor through a synergistic electrodeposition-dealloying strategy combined with aptamer functionalization for detecting 17β-estradiol (E2) in aquatic environments. The NFG/BDD-Apt sensor was systematically characterized using SEM, Raman, and EIS to elucidate its surface morphology, molecular structure, and electrochemical properties. SEM analysis revealed the successful formation of a homogeneous three-dimensional porous NFG structure on the BDD surface, which significantly enhanced the specific surface area (1.9-fold increase vs. bare BDD) and electron transfer efficiency. Electrochemical performance evaluation through CV and DPV demonstrated superior E2 detection capabilities. Under optimized conditions, the sensor exhibited a wide linear response range from 1.0 × 10−14 to 1.0 × 10−8 mol L−1 (R2 = 0.997) with an ultralow detection limit of 1.8 × 10−15 mol L−1 (S/N = 3). NFG/BDD-Apt demonstrated exceptional selectivity (>92% specificity against common interferents) and long-term stability. This work provides a novel sensing platform combining diamond electrode advantages with nanostructured amplification effects, offering significant potential for rapid and reliable monitoring of endocrine disruptors in environmental water systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米泡沫金修饰金刚石电化学感应平台对17β-雌二醇†的超灵敏监测
本研究通过协同电沉积-脱合金结合适配体功能化策略,开发了纳米泡沫金修饰硼掺杂金刚石(NFG/BDD-Apt)电化学适配体传感器,用于检测水生环境中的17β-雌二醇(E2)。利用SEM、Raman和EIS对NFG/BDD-Apt传感器进行了系统表征,以阐明其表面形貌、分子结构和电化学性能。SEM分析表明,在BDD表面成功形成了均匀的三维多孔NFG结构,显著提高了BDD的比表面积(比裸BDD增加1.9倍)和电子传递效率。通过CV和DPV的电化学性能评价表明,该材料具有较好的E2检测能力。在优化条件下,该传感器的线性响应范围为1.0 × 10−14 ~ 1.0 × 10−8 mol L−1 (R2 = 0.997),超低检出限为1.8 × 10−15 mol L−1 (S/N = 3)。NFG/BDD-Apt对常见干扰物的特异性为92%,具有良好的选择性和长期稳定性。这项工作提供了一种结合金刚石电极优势和纳米结构放大效应的新型传感平台,为环境水系统中内分泌干扰物的快速可靠监测提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
期刊最新文献
Computational and experimental determination of electrochemical standard rate constant from cyclic voltammetry: insights into α + β ≠ 1 systems Application of MOFs-mediated phototherapy in cancer treatment. Application of fermented rose-mulberry fruit composite to enhance the antioxidant capacity, flavor, and sensory characteristics of mulberry wine. Agricultural beneficial microbes accelerate soil degradation of poly(butylene adipate-co-terephthalate) (PBAT) films. Broccoli leaf-derived carbon dots reinforced chitosan/gelatin film as UV-blocking, antioxidant, and antibacterial films for food packaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1