Enhancing the photoelectrochemical properties of ZnO nanorods through cross-linked polyaniline films

IF 3.674 4区 工程技术 Q1 Engineering Applied Nanoscience Pub Date : 2025-04-17 DOI:10.1007/s13204-025-03087-w
M. Tommy Hasan Abadi, Erma Surya Yuliana, Atika Sari Puspita Dewi, Ahmad Taufiq, Sunaryono Sunaryono, Poppy Puspitasari, Suriati Sufian, Muhammad Safwan Aziz, Nandang Mufti
{"title":"Enhancing the photoelectrochemical properties of ZnO nanorods through cross-linked polyaniline films","authors":"M. Tommy Hasan Abadi,&nbsp;Erma Surya Yuliana,&nbsp;Atika Sari Puspita Dewi,&nbsp;Ahmad Taufiq,&nbsp;Sunaryono Sunaryono,&nbsp;Poppy Puspitasari,&nbsp;Suriati Sufian,&nbsp;Muhammad Safwan Aziz,&nbsp;Nandang Mufti","doi":"10.1007/s13204-025-03087-w","DOIUrl":null,"url":null,"abstract":"<div><p>This research examines the impact of a conductive polyaniline (PANI) thin film, cross-linked with formaldehyde, on the photoelectrochemical (PEC) capabilities of zinc oxide (ZnO) nanorods (NRs) for water-splitting purposes. The study involved a two-stage process: initially, ZnO NRs were generated on an indium tin oxide (ITO) substrate through a hydrothermal method; subsequently, the cross-linked PANI was produced via chemical polymerization and applied onto the ZnO NRs through spin coating. The crystal structure, surface morphology, and optical properties of the samples were characterized using XRD, SEM, and UV–Vis spectroscopy. The assessment of the PEC performance was carried out through CV and EIS. XRD analysis confirmed the existence of a hexagonal crystal structure of ZnO NRs. SEM analysis indicated a ZnO NRs average diameter of 164.5 nm. The band gap of the ZnO NRs, ZnO NRs/PANI, and ZnO NRs/PANI cross-linked formaldehyde are 3.04 eV, 3.02 eV, and 3.13 eV, respectively. The outcomes revealed that ZnO nanorods coated with cross-linked PANI exhibited the highest current density of 0.66 mA/cm<sup>2</sup> and a PEC efficiency of 0.41%. Furthermore, the EIS analysis verified that the cross-linked PANI improved the ionic conductivity of the ZnO NRs film. This study contributes to the comprehension of how cross-linked conductive polymers can boost the photoelectrochemical performance of semiconductor materials, presenting a potential strategy to enhance the efficacy of water-splitting devices.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"15 2","pages":""},"PeriodicalIF":3.6740,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13204-025-03087-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This research examines the impact of a conductive polyaniline (PANI) thin film, cross-linked with formaldehyde, on the photoelectrochemical (PEC) capabilities of zinc oxide (ZnO) nanorods (NRs) for water-splitting purposes. The study involved a two-stage process: initially, ZnO NRs were generated on an indium tin oxide (ITO) substrate through a hydrothermal method; subsequently, the cross-linked PANI was produced via chemical polymerization and applied onto the ZnO NRs through spin coating. The crystal structure, surface morphology, and optical properties of the samples were characterized using XRD, SEM, and UV–Vis spectroscopy. The assessment of the PEC performance was carried out through CV and EIS. XRD analysis confirmed the existence of a hexagonal crystal structure of ZnO NRs. SEM analysis indicated a ZnO NRs average diameter of 164.5 nm. The band gap of the ZnO NRs, ZnO NRs/PANI, and ZnO NRs/PANI cross-linked formaldehyde are 3.04 eV, 3.02 eV, and 3.13 eV, respectively. The outcomes revealed that ZnO nanorods coated with cross-linked PANI exhibited the highest current density of 0.66 mA/cm2 and a PEC efficiency of 0.41%. Furthermore, the EIS analysis verified that the cross-linked PANI improved the ionic conductivity of the ZnO NRs film. This study contributes to the comprehension of how cross-linked conductive polymers can boost the photoelectrochemical performance of semiconductor materials, presenting a potential strategy to enhance the efficacy of water-splitting devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过交联聚苯胺膜增强ZnO纳米棒的光电化学性能
本研究考察了与甲醛交联的导电聚苯胺(PANI)薄膜对氧化锌(ZnO)纳米棒(nr)用于水分解的光电化学(PEC)能力的影响。该研究涉及两个阶段的过程:首先,通过水热法在氧化铟锡(ITO)衬底上生成ZnO NRs;然后,通过化学聚合法制备交联聚苯胺,并通过自旋涂层将其涂覆在ZnO纳米粒子上。利用XRD、SEM和UV-Vis光谱对样品的晶体结构、表面形貌和光学性能进行了表征。通过CV和EIS对PEC性能进行了评价。XRD分析证实了ZnO nmr具有六方晶体结构。SEM分析表明ZnO纳米束的平均直径为164.5 nm。ZnO NRs、ZnO NRs/PANI和ZnO NRs/PANI交联甲醛的带隙分别为3.04 eV、3.02 eV和3.13 eV。结果表明,交联聚苯胺包覆ZnO纳米棒的电流密度最高,为0.66 mA/cm2, PEC效率为0.41%。此外,EIS分析证实交联聚苯胺提高了ZnO NRs膜的离子电导率。本研究有助于理解交联导电聚合物如何提高半导体材料的光电化学性能,为提高水分解器件的效率提供了一种潜在的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Nanoscience
Applied Nanoscience Materials Science-Materials Science (miscellaneous)
CiteScore
7.10
自引率
0.00%
发文量
430
期刊介绍: Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.
期刊最新文献
Targeted disruption of Biofilm-Associated MDR pathogens using Curcumin-Loaded mesoporous spions Green-assisted pulsed laser ablation for the sustainable synthesis of CUO nanoparticles with antibacterial properties Evaluation of electronic noise components in heterojunction double gate ferroelectric p-n-i-n tunnel field-effect transistors Synthesis and photocatalytic evaluation of visible Light-Activated Ni-S codoped TiO₂ in Metanil yellow degradation Tunable third-order optical nonlinearity in Ag/Au nanostructures with Al2O3 coating layer under femtosecond and nanosecond excitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1