Cobalt Single Atom-Enhanced Photocatalysis: Hetero-Phase Elemental Phosphorus for Visible Light Hydrogen Production from Pure Water Splitting

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-04-17 DOI:10.1002/adfm.202503667
Xinhui Zhai, Zhen Wei, Zigang Lu, Xu Zhang, Xianjie Chen, Yuxi Liu, Jiguang Deng, Yongfa Zhu, Hongxing Dai, Lin Jing
{"title":"Cobalt Single Atom-Enhanced Photocatalysis: Hetero-Phase Elemental Phosphorus for Visible Light Hydrogen Production from Pure Water Splitting","authors":"Xinhui Zhai,&nbsp;Zhen Wei,&nbsp;Zigang Lu,&nbsp;Xu Zhang,&nbsp;Xianjie Chen,&nbsp;Yuxi Liu,&nbsp;Jiguang Deng,&nbsp;Yongfa Zhu,&nbsp;Hongxing Dai,&nbsp;Lin Jing","doi":"10.1002/adfm.202503667","DOIUrl":null,"url":null,"abstract":"<p>Elemental P is considered a compelling option for constructing a simple, cost-effective, and full-spectrum responsive catalytic system for hydrogen production, while its full potential for overall water-splitting reactions remains underexplored. This study introduces a novel cobalt single-atom-assisted photocatalytic system for efficient hydrogen production via water splitting. Utilizing an in situ surface phase transformation, amorphous red phosphorus (a-RP) is converted into crystalline black phosphorus (c-BP), forming a Z-scheme heterojunction with cobalt single atoms (Co<sub>1</sub>) uniformly dispersed across the heterojunction surface. Advanced characterization techniques confirm the intimate contact and strong electronic interactions between Co<sub>1</sub>, c-BP, and a-RP, significantly enhancing photocatalytic performance. This system achieves a high hydrogen production rate of ≈2497 µmol g<sup>−1</sup> h<sup>−1</sup> from pure water splitting under visible light irradiation and a remarkable solar-to-hydrogen (STH) efficiency of 0.86%, outperforming most reported photocatalytic systems. This study highlights the potential of single-atom catalysts in enhancing the performance of photocatalysts. It provides a new perspective on designing efficient and stable elemental-based photocatalytic systems for sustainable hydrogen production.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 38","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202503667","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Elemental P is considered a compelling option for constructing a simple, cost-effective, and full-spectrum responsive catalytic system for hydrogen production, while its full potential for overall water-splitting reactions remains underexplored. This study introduces a novel cobalt single-atom-assisted photocatalytic system for efficient hydrogen production via water splitting. Utilizing an in situ surface phase transformation, amorphous red phosphorus (a-RP) is converted into crystalline black phosphorus (c-BP), forming a Z-scheme heterojunction with cobalt single atoms (Co1) uniformly dispersed across the heterojunction surface. Advanced characterization techniques confirm the intimate contact and strong electronic interactions between Co1, c-BP, and a-RP, significantly enhancing photocatalytic performance. This system achieves a high hydrogen production rate of ≈2497 µmol g−1 h−1 from pure water splitting under visible light irradiation and a remarkable solar-to-hydrogen (STH) efficiency of 0.86%, outperforming most reported photocatalytic systems. This study highlights the potential of single-atom catalysts in enhancing the performance of photocatalysts. It provides a new perspective on designing efficient and stable elemental-based photocatalytic systems for sustainable hydrogen production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钴单原子增强光催化:异相元素磷在可见光下从纯水裂解制氢
元素P被认为是构建一种简单、经济、全谱反应的制氢催化系统的一个有吸引力的选择,但它在整体水分解反应中的全部潜力仍未得到充分发掘。本研究介绍了一种新型的钴单原子辅助光催化系统,用于水裂解高效制氢。利用原位表面相变,无定形红磷(a- rp)转化为结晶黑磷(c-BP),形成钴单原子(Co1)均匀分散在异质结表面的z型异质结。先进的表征技术证实了Co1、c-BP和a-RP之间的密切接触和强电子相互作用,显著提高了光催化性能。该系统在可见光照射下,纯水分解产氢率高达≈2497µmol g−1 h−1,太阳能制氢效率高达0.86%,优于大多数已报道的光催化系统。本研究强调了单原子催化剂在提高光催化剂性能方面的潜力。这为设计高效、稳定的元素基光催化体系用于可持续制氢提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Super‐Stable Triphase Nanostructured NiTi for Elastocaloric Heat Pump A High‐Areal‐Capacity and Long‐Cycle‐Life Zinc‐Ion Battery with Robust V 2 O 3 @Graphene Microlattice Cathode and Interface‐Protected Zn Anode Single‐Layer Gradient MXene Aerogels via a Facile Gravity‐Assisted Assembly Strategy for High‐Performance Broadband Multispectral Camouflage Trisilyl‐Functionalized Metal–Organic Framework Nanocrystallites for Synergistic Ultrafast Ppb‐Level Detection of Antibiotics and Organic Explosives Atomic Environment Engineering of Cobalt Single Atom‐Nanocluster Synergistic Sites on Nitrogen‐Doped MXene for Bidirectional Sulfur Electrocatalysis and Uniform Lithium Deposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1