Uniting Superior Electromagnetic Wave Absorption with High Thermal Stability in Bioinspired Metamaterial by Direct Ink Writing

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-04-17 DOI:10.1002/adfm.202424499
Guanghui Feng, Lingxiang Guo, Hanyang Yu, Ying Li, Bin Ren, Bing Liu, Lei Wan, Jia Sun, Xi He, Qiangang Fu, Hejun Li, Jian Lu
{"title":"Uniting Superior Electromagnetic Wave Absorption with High Thermal Stability in Bioinspired Metamaterial by Direct Ink Writing","authors":"Guanghui Feng,&nbsp;Lingxiang Guo,&nbsp;Hanyang Yu,&nbsp;Ying Li,&nbsp;Bin Ren,&nbsp;Bing Liu,&nbsp;Lei Wan,&nbsp;Jia Sun,&nbsp;Xi He,&nbsp;Qiangang Fu,&nbsp;Hejun Li,&nbsp;Jian Lu","doi":"10.1002/adfm.202424499","DOIUrl":null,"url":null,"abstract":"<p>High-performance electromagnetic wave (EMW) absorption materials are in great demand in intelligent communication and camouflage fields. Achieving efficient EMW absorption under some extreme environments, such as strong chemical corrosion and thermal impact, remains a huge challenge. Drawing inspiration from the natural structure of rose petals, here a three-dimensionally printed SiOC-ZrB<sub>2</sub> metamaterial is proposed, which shows not only gradient impedance but also multiple polarization modes. Such advancements endow the metamaterial with a broad bandwidth of 10.80 GHz and a strong reflection loss of −39.17 dB. Importantly, serving as a wing of an aircraft, the metamaterial presents a small radar cross-section of −59.54 dB(m<sup>2</sup>) and a high thermo-oxidative stability up to 1500 °C, with a mass change of less than 3.2% after exposure for 240 min, holding a great promise for extremely thermal scenes. This work extends the design strategy of EMW absorption metamaterial and drives the development of advanced absorbers with environmental adaptation.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 36","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202424499","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-performance electromagnetic wave (EMW) absorption materials are in great demand in intelligent communication and camouflage fields. Achieving efficient EMW absorption under some extreme environments, such as strong chemical corrosion and thermal impact, remains a huge challenge. Drawing inspiration from the natural structure of rose petals, here a three-dimensionally printed SiOC-ZrB2 metamaterial is proposed, which shows not only gradient impedance but also multiple polarization modes. Such advancements endow the metamaterial with a broad bandwidth of 10.80 GHz and a strong reflection loss of −39.17 dB. Importantly, serving as a wing of an aircraft, the metamaterial presents a small radar cross-section of −59.54 dB(m2) and a high thermo-oxidative stability up to 1500 °C, with a mass change of less than 3.2% after exposure for 240 min, holding a great promise for extremely thermal scenes. This work extends the design strategy of EMW absorption metamaterial and drives the development of advanced absorbers with environmental adaptation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过直接墨水书写结合生物灵感超材料的优越电磁波吸收和高热稳定性
高性能电磁波吸收材料在智能通信和伪装领域有着巨大的需求。在一些极端环境下,如强化学腐蚀和热冲击下,实现高效的EMW吸收仍然是一个巨大的挑战。从玫瑰花瓣的自然结构中汲取灵感,提出了一种三维打印的SiOC-ZrB2超材料,它不仅具有梯度阻抗,而且具有多种极化模式。这使得该超材料具有10.80 GHz的宽带带宽和−39.17 dB的强反射损耗。重要的是,作为飞机的机翼,这种超材料具有- 59.54 dB(m2)的小雷达横截面和高达1500°C的高热氧化稳定性,暴露240分钟后质量变化小于3.2%,在极热场景中具有很大的前景。这项工作拓展了EMW吸收超材料的设计策略,推动了具有环境适应性的先进吸收材料的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Super‐Stable Triphase Nanostructured NiTi for Elastocaloric Heat Pump A High‐Areal‐Capacity and Long‐Cycle‐Life Zinc‐Ion Battery with Robust V 2 O 3 @Graphene Microlattice Cathode and Interface‐Protected Zn Anode Single‐Layer Gradient MXene Aerogels via a Facile Gravity‐Assisted Assembly Strategy for High‐Performance Broadband Multispectral Camouflage Trisilyl‐Functionalized Metal–Organic Framework Nanocrystallites for Synergistic Ultrafast Ppb‐Level Detection of Antibiotics and Organic Explosives Atomic Environment Engineering of Cobalt Single Atom‐Nanocluster Synergistic Sites on Nitrogen‐Doped MXene for Bidirectional Sulfur Electrocatalysis and Uniform Lithium Deposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1