Analysis of the Voltage Ramp Rate Effects on the Programming Characteristics of Bipolar-Type Memristive Devices

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Nanotechnology Pub Date : 2025-04-02 DOI:10.1109/TNANO.2025.3556856
E. Miranda;E. Piros;F. L. Aguirre;T. Kim;P. Schreyer;J. Gehrunger;T. Schwarz;T. Oster;K. Hofmann;J. Suñé;C. Hochberger;L. Alff
{"title":"Analysis of the Voltage Ramp Rate Effects on the Programming Characteristics of Bipolar-Type Memristive Devices","authors":"E. Miranda;E. Piros;F. L. Aguirre;T. Kim;P. Schreyer;J. Gehrunger;T. Schwarz;T. Oster;K. Hofmann;J. Suñé;C. Hochberger;L. Alff","doi":"10.1109/TNANO.2025.3556856","DOIUrl":null,"url":null,"abstract":"We investigate in this letter the role the voltage ramp rate plays in the conduction and programming characteristics of bipolar-type memristive devices. It is shown that speeding up the writing or erasing process of a memristor is beneficial in terms of energy consumption but has a side cost associated with power dissipation. This happens because of the dynamical aspects of the set and reset transitions which are ultimately dictated by the physics of metal ions and oxygen vacancies migration. It is shown that by adding a constant base voltage to the voltage sweep, shorter programming times can be achieved but no significant impact on the power dissipation-energy consumption relationship is observed. Modeling and simulations are carried out with the aid of the Dynamic Memdiode Model and its implementation in LTspice using the Method of Elementary Solvers. Since the device model parameters and simulation conditions can vary in a wide range, the complete schematics are provided so that the interested readers can test different casuistries by themselves.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"205-208"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10947287","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10947287/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate in this letter the role the voltage ramp rate plays in the conduction and programming characteristics of bipolar-type memristive devices. It is shown that speeding up the writing or erasing process of a memristor is beneficial in terms of energy consumption but has a side cost associated with power dissipation. This happens because of the dynamical aspects of the set and reset transitions which are ultimately dictated by the physics of metal ions and oxygen vacancies migration. It is shown that by adding a constant base voltage to the voltage sweep, shorter programming times can be achieved but no significant impact on the power dissipation-energy consumption relationship is observed. Modeling and simulations are carried out with the aid of the Dynamic Memdiode Model and its implementation in LTspice using the Method of Elementary Solvers. Since the device model parameters and simulation conditions can vary in a wide range, the complete schematics are provided so that the interested readers can test different casuistries by themselves.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电压斜坡率对双极型记忆器件编程特性的影响分析
我们在这封信中研究了电压斜坡率在双极型记忆器件的传导和编程特性中所起的作用。结果表明,加快忆阻器的写入或擦除过程在能量消耗方面是有益的,但具有与功耗相关的附带成本。这种情况的发生是由于设定和重置转变的动力学方面,最终由金属离子和氧空位迁移的物理特性决定。结果表明,通过在电压扫描中加入一个恒定的基极电压,可以缩短编程时间,但对功耗-能耗关系没有显著影响。利用动态Memdiode模型进行建模和仿真,并利用初等求解方法在LTspice中实现该模型。由于器件模型参数和仿真条件可以在很大范围内变化,因此提供了完整的原理图,以便有兴趣的读者可以自己测试不同的神秘性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
期刊最新文献
A Partial-Ground-Plane Based Silicon on Insulator Transistor for Energy-Efficient Leaky Integrate-and-Fire Neuron Realizations and Applications High Response Ethanol Gas Sensor Based on g-C3N4@SnO2 Nanocomposites Low-Temperature and High-Performance Acetone Sensor Based on ZIF-67 Derived Co3O4 Modified by Functionalized Graphene Power-Balanced Memristive Cryptographic Implementation Against Side Channel Attacks Large-Area Field Enhancement via Plasmonic Hot-Grid in Nanocube Arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1