Advancing the Understanding of Snow Accumulation, Melting, and Associated Thermal Insulation Using Spatially Dense Snow Depth and Temperature Time Series

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geophysical Research Letters Pub Date : 2025-04-18 DOI:10.1029/2024GL114189
Chen Wang, Ian A. Shirley, Stijn Wielandt, Sylvain Fiolleau, Jack R. Lamb, Sebastian Uhlemann, Craig Ulrich, Katrina E. Bennett, Baptiste Dafflon
{"title":"Advancing the Understanding of Snow Accumulation, Melting, and Associated Thermal Insulation Using Spatially Dense Snow Depth and Temperature Time Series","authors":"Chen Wang,&nbsp;Ian A. Shirley,&nbsp;Stijn Wielandt,&nbsp;Sylvain Fiolleau,&nbsp;Jack R. Lamb,&nbsp;Sebastian Uhlemann,&nbsp;Craig Ulrich,&nbsp;Katrina E. Bennett,&nbsp;Baptiste Dafflon","doi":"10.1029/2024GL114189","DOIUrl":null,"url":null,"abstract":"<p>Snow thermal insulation is a critical factor influencing ground thermal dynamics and associated biogeochemical processes. We analyzed the spatiotemporal variability of snow accumulation, melting, and thermal insulation dynamics using spatially dense, collocated snow depth and ground interface temperature time series over two consecutive years. We demonstrated that considering late-winter snow depth alone was insufficient to fully capture the complexity in snow and insulation dynamics. The influence of vegetation and topography on snow depth distribution varied over the season, across sites and years. We found that deep snow with a long melting period had a substantial impact on thawing <i>n</i>-factors. To better predict snow insulation effects, we proposed a new weighted snow depth metric that integrates mean daily snow depth and air temperature throughout the cold season. Our results provide insights for developing space-time remote sensing products and evaluating the representation of snow and permafrost processes in Earth system models.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 8","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL114189","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GL114189","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Snow thermal insulation is a critical factor influencing ground thermal dynamics and associated biogeochemical processes. We analyzed the spatiotemporal variability of snow accumulation, melting, and thermal insulation dynamics using spatially dense, collocated snow depth and ground interface temperature time series over two consecutive years. We demonstrated that considering late-winter snow depth alone was insufficient to fully capture the complexity in snow and insulation dynamics. The influence of vegetation and topography on snow depth distribution varied over the season, across sites and years. We found that deep snow with a long melting period had a substantial impact on thawing n-factors. To better predict snow insulation effects, we proposed a new weighted snow depth metric that integrates mean daily snow depth and air temperature throughout the cold season. Our results provide insights for developing space-time remote sensing products and evaluating the representation of snow and permafrost processes in Earth system models.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用空间密集雪深和温度时间序列推进对积雪、融化和相关保温的理解
积雪绝热是影响地表热动力学和相关生物地球化学过程的关键因素。利用空间密集、雪深和地面界面温度连续2年的时间序列,分析了积雪、融化和保温的时空变化动态。我们证明,仅考虑冬末积雪深度不足以充分捕捉积雪和绝缘动力学的复杂性。植被和地形对积雪深度分布的影响随季节、站点和年份而变化。我们发现,融化期长的深雪对融化n因子有显著影响。为了更好地预测积雪隔热效果,我们提出了一个新的加权雪深度量,该度量综合了整个寒冷季节的平均日雪深和气温。我们的研究结果为开发时空遥感产品和评估地球系统模型中雪和永久冻土过程的表征提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
期刊最新文献
Quantifying the Wind‐Lens Effect on Dust Emission From the Bodélé Depression In Situ Observations Reveal That the South Asian Summer Monsoon Weakens Aerosol Cloud Activation Over the Southern Tibetan Plateau Near‐Future Damages by US Weather and Climate Disasters Unraveling Jupiter's Enigmatic Ionosphere: Evidence of Magnetically‐Controlled Wind‐Driven Dynamics Freeze‐Thaw Processes Induce Convective Fingering in Saline Soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1