Band-aid-assisted Joule heater based on laser-induced graphene for thermotherapy applications

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Letters Pub Date : 2025-04-18 DOI:10.1016/j.matlet.2025.138602
Yexiong Huang, Zikai Bao, Tingyu Liu, Chunxin Hao, Xinyuan Wang, Jinmin Li
{"title":"Band-aid-assisted Joule heater based on laser-induced graphene for thermotherapy applications","authors":"Yexiong Huang,&nbsp;Zikai Bao,&nbsp;Tingyu Liu,&nbsp;Chunxin Hao,&nbsp;Xinyuan Wang,&nbsp;Jinmin Li","doi":"10.1016/j.matlet.2025.138602","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a high-performance Joule heater is proposed, which is composed of LIG as the heating layer and medical band-aids as the substrate. Thanks to the sodium lignosulfonate as carbon source, laser-induced graphene (LIG), is successfully prepared on the medical band-aids. The Joule heater exhibits remarkable electrothermal performance, capable of reaching a high temperature of 96.6 °C at a low operating voltage of 8 V. The band-aid-assisted LIG-based Joule heater is demonstrated for thermotherapy applications, showing good heating temperature controllability. This work can provide a solution for the development of comfortable LIG-based flexible electronics based on medical band-aids.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"393 ","pages":"Article 138602"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X25006317","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a high-performance Joule heater is proposed, which is composed of LIG as the heating layer and medical band-aids as the substrate. Thanks to the sodium lignosulfonate as carbon source, laser-induced graphene (LIG), is successfully prepared on the medical band-aids. The Joule heater exhibits remarkable electrothermal performance, capable of reaching a high temperature of 96.6 °C at a low operating voltage of 8 V. The band-aid-assisted LIG-based Joule heater is demonstrated for thermotherapy applications, showing good heating temperature controllability. This work can provide a solution for the development of comfortable LIG-based flexible electronics based on medical band-aids.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于激光诱导石墨烯的热疗创可贴辅助焦耳加热器
本文提出了一种以LIG为加热层,医用创可贴为衬底的高性能焦耳加热器。以木质素磺酸钠为碳源,成功制备了医用创可贴上的激光诱导石墨烯(LIG)。焦耳加热器具有优异的电热性能,在8 V的低工作电压下可达到96.6°C的高温。该创可贴辅助光基焦耳加热器用于热治疗,具有良好的加热温度可控性。这项工作为开发基于医用创可贴的舒适的基于激光的柔性电子产品提供了解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
期刊最新文献
Synthesis and photoluminescence properties of zinc stannate nanoparticles by a polyacrylamide gel route On superconductivity and stability of amorphous gallium nanowires grown in superfluid helium Active gelatin-based bioplastic films reinforced with rice husk nanocellulose, Nano-MgO, and neem oil for food packaging Plasmonic ag@AgX/g-C₃N₄ Z-scheme heterojunctions for enhanced bisphenol a photodegradation Research on tensile deformation at elevated temperatures and fractographic analysis of P91 steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1