Full visible range emissions with ultra-high density InGaN/GaN quantum dots achieved by selective area growth

IF 2 4区 材料科学 Q3 CRYSTALLOGRAPHY Journal of Crystal Growth Pub Date : 2025-04-10 DOI:10.1016/j.jcrysgro.2025.128180
Cheng Liu , Nikhil Pokharel , Miguel A. Betancourt Ponce , Qinchen Lin , Padma Gopalan , Chirag Gupta , Shubhra S. Pasayat , Luke Mawst
{"title":"Full visible range emissions with ultra-high density InGaN/GaN quantum dots achieved by selective area growth","authors":"Cheng Liu ,&nbsp;Nikhil Pokharel ,&nbsp;Miguel A. Betancourt Ponce ,&nbsp;Qinchen Lin ,&nbsp;Padma Gopalan ,&nbsp;Chirag Gupta ,&nbsp;Shubhra S. Pasayat ,&nbsp;Luke Mawst","doi":"10.1016/j.jcrysgro.2025.128180","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we developed ultra-high density InGaN/GaN nanopyramid quantum dots (QD) via Selective Area Growth (SAG) using Metal–Organic Chemical Vapor Deposition (MOCVD). We achieved QDs as small as 23 nm-diameter QDs with a density of 7–10 × 10<sup>10</sup> cm<sup>−2</sup>. The optical and structural properties of these nanostructures were analyzed using Photoluminescence (PL), Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), and Transmission Electron Microscopy (TEM). Various growth conditions and structure designs including growth temperature, growth rate, TMIn flow rate, and InGaN thickness, were studied to extend the QD emission across the full visible emission range. Power-dependent and temperature-dependent PL measurements were conducted to further investigate the optical properties. An additional longer wavelength QD spectral emission peak was suppressed at low temperatures or higher excitation power, indicating the presence of Shockley-Read-Hall recombination at low injection carrier densities.</div></div>","PeriodicalId":353,"journal":{"name":"Journal of Crystal Growth","volume":"663 ","pages":"Article 128180"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crystal Growth","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022024825001289","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we developed ultra-high density InGaN/GaN nanopyramid quantum dots (QD) via Selective Area Growth (SAG) using Metal–Organic Chemical Vapor Deposition (MOCVD). We achieved QDs as small as 23 nm-diameter QDs with a density of 7–10 × 1010 cm−2. The optical and structural properties of these nanostructures were analyzed using Photoluminescence (PL), Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), and Transmission Electron Microscopy (TEM). Various growth conditions and structure designs including growth temperature, growth rate, TMIn flow rate, and InGaN thickness, were studied to extend the QD emission across the full visible emission range. Power-dependent and temperature-dependent PL measurements were conducted to further investigate the optical properties. An additional longer wavelength QD spectral emission peak was suppressed at low temperatures or higher excitation power, indicating the presence of Shockley-Read-Hall recombination at low injection carrier densities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过选择性面积生长实现了超高密度InGaN/GaN量子点的全可见范围发射
在这项研究中,我们利用金属有机化学气相沉积(MOCVD)技术,通过选择性面积生长(SAG)制备了超高密度的InGaN/GaN纳米金字塔量子点(QD)。我们实现了小至23 nm直径的量子点,密度为7-10 × 1010 cm−2。利用光致发光(PL)、扫描电子显微镜(SEM)、x射线衍射(XRD)和透射电子显微镜(TEM)分析了这些纳米结构的光学和结构特性。研究了不同的生长条件和结构设计,包括生长温度、生长速率、TMIn流速和InGaN厚度,以扩展QD在整个可见光发射范围内的发射。进行了功率依赖和温度依赖的PL测量,以进一步研究光学性质。低温或高激发功率抑制了一个额外的波长较长的QD光谱发射峰,表明在低注入载流子密度下存在Shockley-Read-Hall复合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Crystal Growth
Journal of Crystal Growth 化学-晶体学
CiteScore
3.60
自引率
11.10%
发文量
373
审稿时长
65 days
期刊介绍: The journal offers a common reference and publication source for workers engaged in research on the experimental and theoretical aspects of crystal growth and its applications, e.g. in devices. Experimental and theoretical contributions are published in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallization in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapor deposition, growth of III-V and II-VI and other semiconductors; characterization of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multilayer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials. A special feature of the journal is the periodic inclusion of proceedings of symposia and conferences on relevant aspects of crystal growth.
期刊最新文献
Optimizing growth interface shape in CdZnTe single crystal growth using vertical Bridgman method Effects of Sr2+ doping on the X-ray detection properties of Cs3Cu2I5 crystal A study on solid–liquid interface shape optimization and dislocation suppression for 4.5-inch InP single crystal growth based on vertical gradient freezing technique Solid-phase crystallization of amorphous Ga2O3/sapphire(0001) thin films monitored using in-situ multimodal X-ray probe technique Crystalline-to-amorphous transition in Sn-doped Ga2O3 thin films grown by radio-frequency powder sputtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1