Qing Li , Min Jiang , Huirong Yang , Xuyan Zong , Teodora Emilia Coldea , Chao Cheng , Haifeng Zhao
{"title":"Transcriptome profiling unravels improved ethanol production and acetic acid tolerance in yeast by preculture of wheat gluten hydrolysates","authors":"Qing Li , Min Jiang , Huirong Yang , Xuyan Zong , Teodora Emilia Coldea , Chao Cheng , Haifeng Zhao","doi":"10.1016/j.jbiotec.2025.04.009","DOIUrl":null,"url":null,"abstract":"<div><div>The effects of wheat gluten hydrolysates (WGH) preculture on yeast acetic acid tolerance and fermentation performances were investigated. Results showed that WGH preculture significantly increased yeast growth and viability under acetic acid stress. Particularly, the WGH fraction precipitated with 90 % (v/v) gradient ethanol (WGH-C) preculture significantly improved yeast cell membrane integrity and H<sup>+</sup>-ATPase activity, thereby decreasing the intracellular accumulation of ROS and acetic acid. Meanwhile, WGH-C preculture promoted the ethanol production efficiency, shortening the fermentation lag time by 12 h and increasing the ethanol yield by 37.46 %. These improvements were attributed to that WGH-C preculture regulated intracellular amino acid composition and transport protein related gene expression of yeast. Transcriptome profiling demonstrated that the cell wall and plasma membrane structures were remodeled, reducing the oxidative stress induced by acetic acid. Furthermore, regulation of energy metabolism and transporter activity are prime mechanisms in improving acetic acid tolerance and fermentation efficiency of yeast.</div></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"403 ","pages":"Pages 103-114"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165625000951","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of wheat gluten hydrolysates (WGH) preculture on yeast acetic acid tolerance and fermentation performances were investigated. Results showed that WGH preculture significantly increased yeast growth and viability under acetic acid stress. Particularly, the WGH fraction precipitated with 90 % (v/v) gradient ethanol (WGH-C) preculture significantly improved yeast cell membrane integrity and H+-ATPase activity, thereby decreasing the intracellular accumulation of ROS and acetic acid. Meanwhile, WGH-C preculture promoted the ethanol production efficiency, shortening the fermentation lag time by 12 h and increasing the ethanol yield by 37.46 %. These improvements were attributed to that WGH-C preculture regulated intracellular amino acid composition and transport protein related gene expression of yeast. Transcriptome profiling demonstrated that the cell wall and plasma membrane structures were remodeled, reducing the oxidative stress induced by acetic acid. Furthermore, regulation of energy metabolism and transporter activity are prime mechanisms in improving acetic acid tolerance and fermentation efficiency of yeast.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.