Lewis acid-base effect and protonation in electrolyte engineering enable shuttle-free, dendrite-free, and HER-free aqueous Zn-I2 batteries

IF 20.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Energy Storage Materials Pub Date : 2025-04-19 DOI:10.1016/j.ensm.2025.104268
Xingxiu Yang , Long Zhang , Jinyao Zhu , Lequan Wang , Yixiang Zhang , Zhimin Zhai , Junming Kang , Yizhen Shao , Jiajia Zhang , Xianfu Zhang , Jia Guo , Yanglong Hou , Hongbin Lu
{"title":"Lewis acid-base effect and protonation in electrolyte engineering enable shuttle-free, dendrite-free, and HER-free aqueous Zn-I2 batteries","authors":"Xingxiu Yang ,&nbsp;Long Zhang ,&nbsp;Jinyao Zhu ,&nbsp;Lequan Wang ,&nbsp;Yixiang Zhang ,&nbsp;Zhimin Zhai ,&nbsp;Junming Kang ,&nbsp;Yizhen Shao ,&nbsp;Jiajia Zhang ,&nbsp;Xianfu Zhang ,&nbsp;Jia Guo ,&nbsp;Yanglong Hou ,&nbsp;Hongbin Lu","doi":"10.1016/j.ensm.2025.104268","DOIUrl":null,"url":null,"abstract":"<div><div>Electrolyte engineering has emerged as a facile and efficient strategy to solve side reactions in aqueous Zn-I<sub>2</sub> batteries. However, most of these solutions usually ignore the simultaneous modulation of the cathode and anode. Here, a multifunctional electrolyte additive, pyridoxine (VB6), enables simultaneous regulation of the anode and cathode in Zn-I<sub>2</sub> batteries. For the cathode, VB6 preferentially coordinates with <span><math><msup><mrow><mi>I</mi></mrow><mo>−</mo></msup></math></span> ions through Lewis acid-base effect, thereby suppressing the generation of polyiodides and the shuttle effect. For the anode, VB6 can not only significantly restrain the hydrogen evolution reaction (HER) and the pH fluctuation of the electrolyte through protonation, but also promote the fast de-solvation of Zn<sup>2+</sup> and regulate the Zn deposition benefiting from its structure with multi‑hydroxyl groups. Due to the synergistic effect of VB6, the modified symmetric Zn||Zn cell achieves a remarkable Coulombic efficiency (99.7 %) over 1600 h and excellent cycling stability (2100 h). Most intriguingly, the Zn-I<sub>2</sub> cell exhibits an ultra-long lifespan of 50,000 cycles (&gt; 6 months) at 2 A g<sup>-1</sup> with an exceptional capacity retention of 84.3 %. Even without pressurized equipment, the Zn-I<sub>2</sub> pouch cell with VB6 still maintains prominent performance (76.5 % capacity after 450 cycles) without swelling.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"78 ","pages":"Article 104268"},"PeriodicalIF":20.2000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829725002661","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrolyte engineering has emerged as a facile and efficient strategy to solve side reactions in aqueous Zn-I2 batteries. However, most of these solutions usually ignore the simultaneous modulation of the cathode and anode. Here, a multifunctional electrolyte additive, pyridoxine (VB6), enables simultaneous regulation of the anode and cathode in Zn-I2 batteries. For the cathode, VB6 preferentially coordinates with I ions through Lewis acid-base effect, thereby suppressing the generation of polyiodides and the shuttle effect. For the anode, VB6 can not only significantly restrain the hydrogen evolution reaction (HER) and the pH fluctuation of the electrolyte through protonation, but also promote the fast de-solvation of Zn2+ and regulate the Zn deposition benefiting from its structure with multi‑hydroxyl groups. Due to the synergistic effect of VB6, the modified symmetric Zn||Zn cell achieves a remarkable Coulombic efficiency (99.7 %) over 1600 h and excellent cycling stability (2100 h). Most intriguingly, the Zn-I2 cell exhibits an ultra-long lifespan of 50,000 cycles (> 6 months) at 2 A g-1 with an exceptional capacity retention of 84.3 %. Even without pressurized equipment, the Zn-I2 pouch cell with VB6 still maintains prominent performance (76.5 % capacity after 450 cycles) without swelling.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电解质工程中的路易斯酸碱效应和质子化使无穿梭、无枝晶和无her的水性锌- i2电池成为可能
电解质工程已成为解决锌-二氧化钛水电池副反应的一种简便而有效的策略。然而,这些解决方案大多忽视了阴极和阳极的同时调节。在这里,一种多功能电解质添加剂吡哆醇(VB6)可以同时调节 Zn-I2 电池中的阳极和阴极。对于阴极,VB6 通过路易斯酸碱效应优先与 I-I 离子配位,从而抑制了多碘化物的生成和穿梭效应。对于阳极,VB6 不仅能通过质子化作用显著抑制氢进化反应(HER)和电解质的 pH 值波动,还能利用其多羟基结构促进 Zn2+ 的快速脱溶并调节 Zn 的沉积。由于 VB6 的协同作用,改良的对称 Zn||Zn 电池在 1600 小时内实现了显著的库仑效率(99.7%)和出色的循环稳定性(2100 小时)。最引人入胜的是,Zn-I2 电池在 2 A g-1 的条件下可实现 50000 次循环(6 个月)的超长寿命,容量保持率高达 84.3%。即使在没有加压设备的情况下,采用 VB6 的 Zn-I2 袋装电池仍能保持出色的性能(450 次循环后容量保持率为 76.5%),且不会膨胀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
期刊最新文献
Tailoring the Electronic Microenvironment of COF Nanochannels Enable Fast Ion Transport Kinetics in Lithium Metal Batteries A Daniell-Configured Aqueous Zn2+/Li+ Dual-Cation Battery-Supercapacitor Hybrid Device with Self-Orienting Ion Charge for High Energy Density Rational design of electrode mesostructures with integration of polycrystalline and single-crystalline Ni-rich particles Fully active high-entropy P2 layered-oxide cathode for high-energy-density and long-life sodium-ion battery Dipole Competition-Driven Reconstructing Helical Conformations of PAN Polymer Electrolytes for Enhanced Ionic Transport Capability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1