Facile fabrication of hierarchical SAPO-34 zeolite with enhanced MTO catalytic performance

IF 4.7 3区 材料科学 Q1 CHEMISTRY, APPLIED Microporous and Mesoporous Materials Pub Date : 2025-04-17 DOI:10.1016/j.micromeso.2025.113647
Weijiong Dai, Zongqiang Liu, Jing Zhao, Yan Wang, Jiajun Zheng, Ruifeng Li
{"title":"Facile fabrication of hierarchical SAPO-34 zeolite with enhanced MTO catalytic performance","authors":"Weijiong Dai,&nbsp;Zongqiang Liu,&nbsp;Jing Zhao,&nbsp;Yan Wang,&nbsp;Jiajun Zheng,&nbsp;Ruifeng Li","doi":"10.1016/j.micromeso.2025.113647","DOIUrl":null,"url":null,"abstract":"<div><div>SAPO-34 zeolites with excellent selectivity towards to light olefins and highly catalytic stability are highly desirable. In this work, SAPO-34 zeolite (SAPO-34-S-F) featuring both significantly reduced crystal dimension and a hierarchical structure was synthesized for the first time through a seed-assisted strategy employing cost-effective triethylamine (TEA) as the only organic structure-directing agent (OSDA) in the NH<sub>4</sub>F-containing medium. The resulting SAPO-34 zeolite demonstrated exceptional catalytic performance in methanol-to-olefin (MTO) reaction, exhibiting a substantially increased catalytic lifetime of 525 min as well as an impressive light olefin selectivity of up to 83.7 %. These results significantly outperform those of conventional SAPO-34 zeolite with larger crystal dimension synthesized using TEA as OSDA, and SAPO-34 zeolite with similar crystal dimension synthesized without fluoride addition. Thermogravimetric analysis (TGA) of the spent catalysts revealed that SAPO-34-S-F possesses enhanced coke tolerance. Furthermore, in situ UV/Vis studies of the organic intermediates generated on zeolites during MTO reaction provided additional evidence for the excellent catalytic activity and stability of the SAPO-34-S-F sample. These findings offer important insights for the rational development of stable and high-efficiency SAPO-34 zeolite for MTO reaction.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"392 ","pages":"Article 113647"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181125001611","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SAPO-34 zeolites with excellent selectivity towards to light olefins and highly catalytic stability are highly desirable. In this work, SAPO-34 zeolite (SAPO-34-S-F) featuring both significantly reduced crystal dimension and a hierarchical structure was synthesized for the first time through a seed-assisted strategy employing cost-effective triethylamine (TEA) as the only organic structure-directing agent (OSDA) in the NH4F-containing medium. The resulting SAPO-34 zeolite demonstrated exceptional catalytic performance in methanol-to-olefin (MTO) reaction, exhibiting a substantially increased catalytic lifetime of 525 min as well as an impressive light olefin selectivity of up to 83.7 %. These results significantly outperform those of conventional SAPO-34 zeolite with larger crystal dimension synthesized using TEA as OSDA, and SAPO-34 zeolite with similar crystal dimension synthesized without fluoride addition. Thermogravimetric analysis (TGA) of the spent catalysts revealed that SAPO-34-S-F possesses enhanced coke tolerance. Furthermore, in situ UV/Vis studies of the organic intermediates generated on zeolites during MTO reaction provided additional evidence for the excellent catalytic activity and stability of the SAPO-34-S-F sample. These findings offer important insights for the rational development of stable and high-efficiency SAPO-34 zeolite for MTO reaction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高MTO催化性能的SAPO-34分子筛的简易制备
SAPO-34分子筛对轻烯烃具有良好的选择性和高度的催化稳定性。在本研究中,首次在含nh4f的介质中,采用高成本效益的三乙胺(TEA)作为唯一的有机结构导向剂(OSDA),通过种子辅助策略合成了SAPO-34分子筛(SAPO-34- s - f),该分子筛具有显著降低晶体尺寸和分层结构。合成的SAPO-34分子筛在甲醇制烯烃(MTO)反应中表现出优异的催化性能,催化寿命大幅延长至525分钟,轻烯烃选择性高达83.7%。这些结果明显优于以TEA为OSDA合成的大晶粒尺寸的常规SAPO-34分子筛,以及不加氟合成的类似晶粒尺寸的SAPO-34分子筛。热重分析(TGA)表明,SAPO-34-S-F具有较强的耐焦性。此外,对MTO反应过程中沸石上生成的有机中间体的紫外/可见原位研究为SAPO-34-S-F样品优异的催化活性和稳定性提供了额外的证据。这些发现对合理开发稳定高效的SAPO-34分子筛用于MTO反应具有重要的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
期刊最新文献
Molecular additive control of MOF crystallization: effect of phthalocyanine on size and interfacial redox response of ZIF-8 Cu-Co oxides supported on porous minerals for catalytic oxidation of butyl acetate: Particle dispersion, catalytic performance, and oxidation mechanism Tunable selective adsorption and efficient purification of propylene on a series of mesoporous metal-organic frameworks NiPt/SAPO-11 catalysts for hydrodeoxygenation of anisole to cyclohexane: effect of the support's Si/al molar ratio on catalytic performance Amidoxime functionalized chitosan/β-cyclodextrin composite for removal of Cu2+, Pb2+, and Zn2+
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1