Mengmeng Zhao , Jun Wang , Hongchao Li , Haoxue Yang , Yu Zhou , Jinshan Li
{"title":"Grain size effects on mechanical behavior of Al0.25CoCrFeNi high-entropy alloy at room and cryogenic temperatures","authors":"Mengmeng Zhao , Jun Wang , Hongchao Li , Haoxue Yang , Yu Zhou , Jinshan Li","doi":"10.1016/j.intermet.2025.108792","DOIUrl":null,"url":null,"abstract":"<div><div>FCC high-entropy alloys (HEAs) exhibit excellent strain hardening capabilities at both room and cryogenic conditions due to deformation mechanisms such as twinning and stacking faults. Recent studies have focused on further enhancing the strength of FCC (face-centered cubic) HEAs through grain refinement. However, the impact of grain size on the mechanical properties and deformation behavior of these alloys still requires further investigation. This study examines the microstructure and mechanical behavior of Al<sub>0.25</sub>CoCrFeNi HEA with three distinct grain sizes. As the grain size decreases, the yield strength at both 25 °C and −196 °C increases due to grain boundary strengthening. Notably, the Hall-Petch coefficient at −196 °C is slightly higher than that at 25 °C. At 25 °C, the deformation mechanism transitions from dislocation slip to deformation twinning as the grain size increases. At −196 °C, deformation twins are observed in fine-grained samples, with their density increasing and spacing decreasing as the grain size increases. The refinement of nanotwins promotes a dynamic Hall-Petch effect and enhances the strength-ductility balance, attributing to the increase in flow stress and the reduction in stacking fault energy at −196 °C. This study provides valuable insights into the effect of grain size on the deformation mechanisms of alloys at room and cryogenic temperatures.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"183 ","pages":"Article 108792"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979525001578","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
FCC high-entropy alloys (HEAs) exhibit excellent strain hardening capabilities at both room and cryogenic conditions due to deformation mechanisms such as twinning and stacking faults. Recent studies have focused on further enhancing the strength of FCC (face-centered cubic) HEAs through grain refinement. However, the impact of grain size on the mechanical properties and deformation behavior of these alloys still requires further investigation. This study examines the microstructure and mechanical behavior of Al0.25CoCrFeNi HEA with three distinct grain sizes. As the grain size decreases, the yield strength at both 25 °C and −196 °C increases due to grain boundary strengthening. Notably, the Hall-Petch coefficient at −196 °C is slightly higher than that at 25 °C. At 25 °C, the deformation mechanism transitions from dislocation slip to deformation twinning as the grain size increases. At −196 °C, deformation twins are observed in fine-grained samples, with their density increasing and spacing decreasing as the grain size increases. The refinement of nanotwins promotes a dynamic Hall-Petch effect and enhances the strength-ductility balance, attributing to the increase in flow stress and the reduction in stacking fault energy at −196 °C. This study provides valuable insights into the effect of grain size on the deformation mechanisms of alloys at room and cryogenic temperatures.
期刊介绍:
This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys.
The journal reports the science and engineering of metallic materials in the following aspects:
Theories and experiments which address the relationship between property and structure in all length scales.
Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations.
Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties.
Technological applications resulting from the understanding of property-structure relationship in materials.
Novel and cutting-edge results warranting rapid communication.
The journal also publishes special issues on selected topics and overviews by invitation only.