Clustered Carbon Nanotubes Damage Endoplasmic Reticulum

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2025-04-20 DOI:10.1021/acsami.5c03796
Aditya Yadav, Zhou Fang, Yuxin Wang, Kangqiang Qiu, Adrian Tan, Zihan Tang, Xiang Zhang, Baohua Ji, Dechang Li, Jiajie Diao
{"title":"Clustered Carbon Nanotubes Damage Endoplasmic Reticulum","authors":"Aditya Yadav, Zhou Fang, Yuxin Wang, Kangqiang Qiu, Adrian Tan, Zihan Tang, Xiang Zhang, Baohua Ji, Dechang Li, Jiajie Diao","doi":"10.1021/acsami.5c03796","DOIUrl":null,"url":null,"abstract":"Carbon nanotubes (CNTs) have garnered significant attention in recent years due to their unique properties and their wide-range applicability. However, alongside these promising applications, concerns regarding the potential toxicity of CNTs have emerged. In this context, through this work, we have attempted to explore the nanotoxic effect of CNTs over endoplasmic reticular (ER). Using structure illumination and transmission electron microscopies, we unveiled that during endocytosis processes, CNTs form clusters, which lead to fragmentation of the ER structure by puncturing them, thereby inducing potential nanotoxicity. In addition, RNA sequencing data showed that after incubation with CNTs, activating transcription factor 4 (ATF4), a gene responsible for ER stress, was found to be up-regulated. To explore the molecular mechanism, we employed molecular dynamics and coarse-grained simulations and found that clustering of CNTs can significantly increase the speed of lipid extraction, resulting in severe damage.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"23 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c03796","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon nanotubes (CNTs) have garnered significant attention in recent years due to their unique properties and their wide-range applicability. However, alongside these promising applications, concerns regarding the potential toxicity of CNTs have emerged. In this context, through this work, we have attempted to explore the nanotoxic effect of CNTs over endoplasmic reticular (ER). Using structure illumination and transmission electron microscopies, we unveiled that during endocytosis processes, CNTs form clusters, which lead to fragmentation of the ER structure by puncturing them, thereby inducing potential nanotoxicity. In addition, RNA sequencing data showed that after incubation with CNTs, activating transcription factor 4 (ATF4), a gene responsible for ER stress, was found to be up-regulated. To explore the molecular mechanism, we employed molecular dynamics and coarse-grained simulations and found that clustering of CNTs can significantly increase the speed of lipid extraction, resulting in severe damage.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
簇状碳纳米管损伤内质网
近年来,碳纳米管(CNT)因其独特的性能和广泛的应用范围而备受关注。然而,在这些应用前景广阔的同时,人们也对碳纳米管的潜在毒性产生了担忧。在此背景下,我们试图通过这项工作探索 CNTs 对内质网(ER)的纳米毒性效应。利用结构照明和透射电子显微镜,我们揭示了在内质网的内吞过程中,CNTs 形成团簇,通过穿刺导致内质网结构破碎,从而诱发潜在的纳米毒性。此外,RNA 测序数据显示,在与 CNT 培养后,活化转录因子 4(ATF4)(一种导致 ER 应激的基因)被上调。为了探究其分子机制,我们采用了分子动力学和粗粒度模拟,结果发现,CNT 的聚类可显著提高脂质萃取的速度,从而导致严重的损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Enhanced Surface Stability of LiNi0.95Mg0.05O2 Cathode Material by Gradient Coprecipitation Synthesis. Molecular Engineering-Driven Self-Assembled Nanotheranostic System for Mannose-Targeted Synergistically Enhanced Photothermal-Photodynamic Precision Therapy in Colorectal Cancer. Flexible n-Channel Organic Transistors with Low Contact Resistance. Giant Damping-Like Torque Efficiency via Synergistic Spin Hall and Enhanced Orbital Hall Effects. Highly Selective Separation of cis- over trans-1,2-Dimethylcyclohexane Isomers by Nonporous Adaptive Crystals of Pillar[n]arenes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1