Mitochondrial NADPH fuels mitochondrial fatty acid synthesis and lipoylation to power oxidative metabolism

IF 19.1 1区 生物学 Q1 CELL BIOLOGY Nature Cell Biology Pub Date : 2025-04-21 DOI:10.1038/s41556-025-01655-4
Dohun Kim, Rushendhiran Kesavan, Kevin Ryu, Trishna Dey, Austin Marckx, Cameron Menezes, Prakash P. Praharaj, Stewart Morley, Bookyung Ko, Mona H. Soflaee, Harrison J. Tom, Harrison Brown, Hieu S. Vu, Shih-Chia Tso, Chad A. Brautigam, Andrew Lemoff, Marcel Mettlen, Prashant Mishra, Feng Cai, Doug K. Allen, Gerta Hoxhaj
{"title":"Mitochondrial NADPH fuels mitochondrial fatty acid synthesis and lipoylation to power oxidative metabolism","authors":"Dohun Kim, Rushendhiran Kesavan, Kevin Ryu, Trishna Dey, Austin Marckx, Cameron Menezes, Prakash P. Praharaj, Stewart Morley, Bookyung Ko, Mona H. Soflaee, Harrison J. Tom, Harrison Brown, Hieu S. Vu, Shih-Chia Tso, Chad A. Brautigam, Andrew Lemoff, Marcel Mettlen, Prashant Mishra, Feng Cai, Doug K. Allen, Gerta Hoxhaj","doi":"10.1038/s41556-025-01655-4","DOIUrl":null,"url":null,"abstract":"Nicotinamide adenine dinucleotide phosphate (NADPH) is a vital electron donor essential for macromolecular biosynthesis and protection against oxidative stress. Although NADPH is compartmentalized within the cytosol and mitochondria, the specific functions of mitochondrial NADPH remain largely unexplored. Here we demonstrate that NAD+ kinase 2 (NADK2), the principal enzyme responsible for mitochondrial NADPH production, is critical for maintaining protein lipoylation, a conserved lipid modification necessary for the optimal activity of multiple mitochondrial enzyme complexes, including the pyruvate dehydrogenase complex. The mitochondrial fatty acid synthesis (mtFAS) pathway utilizes NADPH for generating protein-bound acyl groups, including lipoic acid. By developing a mass-spectrometry-based method to assess mammalian mtFAS, we reveal that NADK2 is crucial for mtFAS activity. NADK2 deficiency impairs mtFAS-associated processes, leading to reduced cellular respiration and mitochondrial translation. Our findings support a model in which mitochondrial NADPH fuels the mtFAS pathway, thereby sustaining protein lipoylation and mitochondrial oxidative metabolism. Kim et al. show that NAD+ kinase 2 serves as a source of mitochondrial NADPH to support mitochondrial fatty acid synthesis, protein lipoylation and mitochondrial oxidative metabolism.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"27 5","pages":"790-800"},"PeriodicalIF":19.1000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41556-025-01655-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nicotinamide adenine dinucleotide phosphate (NADPH) is a vital electron donor essential for macromolecular biosynthesis and protection against oxidative stress. Although NADPH is compartmentalized within the cytosol and mitochondria, the specific functions of mitochondrial NADPH remain largely unexplored. Here we demonstrate that NAD+ kinase 2 (NADK2), the principal enzyme responsible for mitochondrial NADPH production, is critical for maintaining protein lipoylation, a conserved lipid modification necessary for the optimal activity of multiple mitochondrial enzyme complexes, including the pyruvate dehydrogenase complex. The mitochondrial fatty acid synthesis (mtFAS) pathway utilizes NADPH for generating protein-bound acyl groups, including lipoic acid. By developing a mass-spectrometry-based method to assess mammalian mtFAS, we reveal that NADK2 is crucial for mtFAS activity. NADK2 deficiency impairs mtFAS-associated processes, leading to reduced cellular respiration and mitochondrial translation. Our findings support a model in which mitochondrial NADPH fuels the mtFAS pathway, thereby sustaining protein lipoylation and mitochondrial oxidative metabolism. Kim et al. show that NAD+ kinase 2 serves as a source of mitochondrial NADPH to support mitochondrial fatty acid synthesis, protein lipoylation and mitochondrial oxidative metabolism.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线粒体NADPH为线粒体脂肪酸合成和脂酰化提供燃料,为氧化代谢提供动力
烟酰胺腺嘌呤二核苷酸磷酸(NADPH)是大分子生物合成和抗氧化应激所必需的重要电子供体。虽然NADPH在细胞质和线粒体内被区隔,但线粒体NADPH的具体功能在很大程度上仍未被探索。在这里,我们证明了NAD+激酶2 (NADK2),负责线粒体NADPH产生的主要酶,对于维持蛋白质脂酰化至关重要,这是一种保守的脂质修饰,是多种线粒体酶复合物(包括丙酮酸脱氢酶复合物)的最佳活性所必需的。线粒体脂肪酸合成(mtFAS)途径利用NADPH生成蛋白质结合的酰基,包括硫辛酸。通过开发一种基于质谱的方法来评估哺乳动物mtFAS,我们发现NADK2对mtFAS活性至关重要。NADK2缺乏损害mtfas相关过程,导致细胞呼吸和线粒体翻译减少。我们的研究结果支持线粒体NADPH为mtFAS途径提供燃料的模型,从而维持蛋白质脂酰化和线粒体氧化代谢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Cell Biology
Nature Cell Biology 生物-细胞生物学
CiteScore
28.40
自引率
0.90%
发文量
219
审稿时长
3 months
期刊介绍: Nature Cell Biology, a prestigious journal, upholds a commitment to publishing papers of the highest quality across all areas of cell biology, with a particular focus on elucidating mechanisms underlying fundamental cell biological processes. The journal's broad scope encompasses various areas of interest, including but not limited to: -Autophagy -Cancer biology -Cell adhesion and migration -Cell cycle and growth -Cell death -Chromatin and epigenetics -Cytoskeletal dynamics -Developmental biology -DNA replication and repair -Mechanisms of human disease -Mechanobiology -Membrane traffic and dynamics -Metabolism -Nuclear organization and dynamics -Organelle biology -Proteolysis and quality control -RNA biology -Signal transduction -Stem cell biology
期刊最新文献
Permeability-driven pressure and cell proliferation control lumen morphogenesis in pancreatic organoids. Autophagy-regulated mitochondrial inheritance controls early CD8+ T cell fate commitment. The G3BP stress-granule proteins reinforce the integrated stress response translation programme. Modelling co-development between the somites and neural tube in human trunk-like structures MISO regulates mitochondrial dynamics and mtDNA homeostasis by establishing membrane subdomains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1