Achieving Ultra-Low Contact Resistance via Copper-Intercalated Bilayer MoS2

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2025-04-20 DOI:10.1002/aelm.202500100
Huan Wang, Xiaojie Liu, Hui Wang, Yin Wang, Haitao Yin
{"title":"Achieving Ultra-Low Contact Resistance via Copper-Intercalated Bilayer MoS2","authors":"Huan Wang,&nbsp;Xiaojie Liu,&nbsp;Hui Wang,&nbsp;Yin Wang,&nbsp;Haitao Yin","doi":"10.1002/aelm.202500100","DOIUrl":null,"url":null,"abstract":"<p>The high contact resistance between MoS<sub>2</sub> and metals hinders its potential as an ideal solution for overcoming the short-channel effect in silicon-based FETs at sub-3 nm scales. A MoS<sub>2</sub>-based transistor, featuring bilayer MoS<sub>2</sub> connected to Cu-intercalated bilayer MoS<sub>2</sub> electrodes is theoretically designed. At 0.6 V, contact resistance is 16.7 Ω µm (zigzag) and 30.0 Ω µm (armchair), nearing or even surpassing the 30 Ω µm quantum limit for single-layer materials. This low resistance is attributed to the elimination of the tunneling barrier and the creation of ohmic contacts. Additionally, the small contact potential difference enables lower operating voltages. The intercalation design offers a novel approach to achieving low contact resistance in two-dimentional electronic devices.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 13","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202500100","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aelm.202500100","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The high contact resistance between MoS2 and metals hinders its potential as an ideal solution for overcoming the short-channel effect in silicon-based FETs at sub-3 nm scales. A MoS2-based transistor, featuring bilayer MoS2 connected to Cu-intercalated bilayer MoS2 electrodes is theoretically designed. At 0.6 V, contact resistance is 16.7 Ω µm (zigzag) and 30.0 Ω µm (armchair), nearing or even surpassing the 30 Ω µm quantum limit for single-layer materials. This low resistance is attributed to the elimination of the tunneling barrier and the creation of ohmic contacts. Additionally, the small contact potential difference enables lower operating voltages. The intercalation design offers a novel approach to achieving low contact resistance in two-dimentional electronic devices.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过铜嵌入双层MoS2实现超低接触电阻
MoS2与金属之间的高接触电阻阻碍了其作为克服亚3nm尺度硅基场效应管短沟道效应的理想解决方案的潜力。从理论上设计了一种基于MoS2的晶体管,其特点是双层MoS2连接到Cu插层双层MoS2电极。在0.6 V时,接触电阻为16.7 Ωµm(锯齿形)和30.0 Ωµm(扶手形),接近甚至超过单层材料的30 Ωµm量子极限。这种低电阻是由于消除了隧道势垒和产生了欧姆接触。此外,小的接触电位差可以降低工作电压。这种嵌入设计为实现二维电子器件的低接触电阻提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
Correction to “Mesoporous Carbon Sphere‐Enhanced Flexible Pressure Sensor with Superior Linearity and Wide Range for Wearable Health Monitoring” Current Advances in i‐MAX Phases and their Two Dimensional Derivative i‐MXenes: Challenges and Opportunities (Adv. Electron. Mater. 21/2025) Gel‐Amin for Improving Extracellular Recordings of Cardiomyocytes in a 3D Microphysiological System The Evolution of Gas Sensors Into Neuromorphic Systems Thickness‐Driven Modulation of Electronic Transport in SnSe 2 ‐grown Films by Low‐Temperature Atomic Layer Deposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1