Spintronic Memtransistor Leaky Integrate and Fire Neuron for Spiking Neural Networks

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2025-04-21 DOI:10.1002/aelm.202500091
Aijaz H. Lone, Meng Tang, Daniel N. Rahimi, Xuecui Zou, Dongxing Zheng, Hossein Fariborzi, Xixiang Zhang, Gianluca Setti
{"title":"Spintronic Memtransistor Leaky Integrate and Fire Neuron for Spiking Neural Networks","authors":"Aijaz H. Lone,&nbsp;Meng Tang,&nbsp;Daniel N. Rahimi,&nbsp;Xuecui Zou,&nbsp;Dongxing Zheng,&nbsp;Hossein Fariborzi,&nbsp;Xixiang Zhang,&nbsp;Gianluca Setti","doi":"10.1002/aelm.202500091","DOIUrl":null,"url":null,"abstract":"<p>Spintronic devices based on DWss and skyrmions have shown significant potential for applications in energy-efficient data storage and beyond CMOS computing architectures. Based on the ferromagnetic multilayer spintronic devices, a magnetic field-gated and current-controlled spintronic Leaky Integrate-and-Fire (LIF) neuron with memtransistor properties is showcased. The memtransistor property allows for tuning firing characteristics through external magnetic fields and current pulses. A LIF neuron model is developed based on measured characteristics to integrate the device into system-level Spiking Neural Networks (SNNs). The scalability of the neuron device is confirmed with the micromagnetic simulations in a domain-wall magnetic tunnel junction device. When integrated into SNN and convolutional SNN frameworks, the device achieves classification precision above 96%. The study highlights the device's potential as a neuron in hardware SNN architecture-based neuromorphic computing applications, combining memtransistor properties of the device and high pattern classification accuracy. The results demonstrate a promising path toward developing energy-efficient and scalable neural networks.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 13","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202500091","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aelm.202500091","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spintronic devices based on DWss and skyrmions have shown significant potential for applications in energy-efficient data storage and beyond CMOS computing architectures. Based on the ferromagnetic multilayer spintronic devices, a magnetic field-gated and current-controlled spintronic Leaky Integrate-and-Fire (LIF) neuron with memtransistor properties is showcased. The memtransistor property allows for tuning firing characteristics through external magnetic fields and current pulses. A LIF neuron model is developed based on measured characteristics to integrate the device into system-level Spiking Neural Networks (SNNs). The scalability of the neuron device is confirmed with the micromagnetic simulations in a domain-wall magnetic tunnel junction device. When integrated into SNN and convolutional SNN frameworks, the device achieves classification precision above 96%. The study highlights the device's potential as a neuron in hardware SNN architecture-based neuromorphic computing applications, combining memtransistor properties of the device and high pattern classification accuracy. The results demonstrate a promising path toward developing energy-efficient and scalable neural networks.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自旋电子mem晶体管漏集成与脉冲神经网络发射神经元
基于 DWss 和 skyrmions 的自旋电子器件在高能效数据存储和超越 CMOS 计算架构的应用中显示出巨大的潜力。在铁磁多层自旋电子器件的基础上,展示了一种具有记忆晶体管特性的磁场门控和电流控制自旋电子漏电积分点火(LIF)神经元。忆晶体管特性允许通过外部磁场和电流脉冲调谐点火特性。根据测量到的特性开发了一个 LIF 神经元模型,以便将该器件集成到系统级尖峰神经网络 (SNN) 中。通过在畴壁磁隧道结器件中进行微磁模拟,证实了神经元器件的可扩展性。当集成到 SNN 和卷积 SNN 框架中时,该器件的分类精度达到 96% 以上。这项研究强调了该器件在基于硬件 SNN 架构的神经形态计算应用中作为神经元的潜力,将器件的忆晶体管特性与高模式分类精度相结合。研究结果表明,开发高能效、可扩展的神经网络是一条大有可为的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
Correction to “Mesoporous Carbon Sphere‐Enhanced Flexible Pressure Sensor with Superior Linearity and Wide Range for Wearable Health Monitoring” Current Advances in i‐MAX Phases and their Two Dimensional Derivative i‐MXenes: Challenges and Opportunities (Adv. Electron. Mater. 21/2025) Gel‐Amin for Improving Extracellular Recordings of Cardiomyocytes in a 3D Microphysiological System The Evolution of Gas Sensors Into Neuromorphic Systems Thickness‐Driven Modulation of Electronic Transport in SnSe 2 ‐grown Films by Low‐Temperature Atomic Layer Deposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1