In-situ constructing surface intergranular carbonaceous conductive frameworks and protective layers of Ni-rich layered oxide cathodes

IF 20.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Energy Storage Materials Pub Date : 2025-04-20 DOI:10.1016/j.ensm.2025.104272
Mohan Yang , Silong Zhao , Penghui Guo , Mokai Cui , Hanlou Li , Meng Wang , Jing Wang , Feng Wu , Guoqiang Tan
{"title":"In-situ constructing surface intergranular carbonaceous conductive frameworks and protective layers of Ni-rich layered oxide cathodes","authors":"Mohan Yang ,&nbsp;Silong Zhao ,&nbsp;Penghui Guo ,&nbsp;Mokai Cui ,&nbsp;Hanlou Li ,&nbsp;Meng Wang ,&nbsp;Jing Wang ,&nbsp;Feng Wu ,&nbsp;Guoqiang Tan","doi":"10.1016/j.ensm.2025.104272","DOIUrl":null,"url":null,"abstract":"<div><div>Surface chemistry instability of Ni-rich layered oxides triggers rapid performance degradation and severe safety concerns of Li-ion batteries. Herein we report a transformative approach using free-radical reaction to in-situ build protective conductive carbon frameworks within the surface intergranular of layered oxide cathodes. Typically, a mild reaction between carbon tetrachloride (CCl<sub>4</sub>) and <em>N,N</em>-dimethylformamide (DMF) at 200 °C achieves the direct deposition of amorphous carbon within surface intergranular of LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub>, forming dense protective layers and conductive highways, and also eliminating surface residual alkalis and other impurities. With the enhancement in the surface phase purity, chemistry stability and electrical properties, this cathode surface architecture enables much improved electrochemical performance, exhibiting high cycling retention of 87.7 % after 100 cycles at 0.1 C and 82.5 % after 150 cycles at 1.0 C in 2.80–4.35 V. Notably, the present synthetic methodology provides an efficient carbonaceous modification method for Ni-rich layered oxides, overcoming major constraints of traditional thermal carbonization coating technologies. It may shift the design paradigm of carbothermic sensitive metal oxide materials. Moreover, this facile and scalable fabrication strategy makes them potentially viable for commercialization in Li-ion batteries.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"78 ","pages":"Article 104272"},"PeriodicalIF":20.2000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829725002703","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Surface chemistry instability of Ni-rich layered oxides triggers rapid performance degradation and severe safety concerns of Li-ion batteries. Herein we report a transformative approach using free-radical reaction to in-situ build protective conductive carbon frameworks within the surface intergranular of layered oxide cathodes. Typically, a mild reaction between carbon tetrachloride (CCl4) and N,N-dimethylformamide (DMF) at 200 °C achieves the direct deposition of amorphous carbon within surface intergranular of LiNi0.8Co0.1Mn0.1O2, forming dense protective layers and conductive highways, and also eliminating surface residual alkalis and other impurities. With the enhancement in the surface phase purity, chemistry stability and electrical properties, this cathode surface architecture enables much improved electrochemical performance, exhibiting high cycling retention of 87.7 % after 100 cycles at 0.1 C and 82.5 % after 150 cycles at 1.0 C in 2.80–4.35 V. Notably, the present synthetic methodology provides an efficient carbonaceous modification method for Ni-rich layered oxides, overcoming major constraints of traditional thermal carbonization coating technologies. It may shift the design paradigm of carbothermic sensitive metal oxide materials. Moreover, this facile and scalable fabrication strategy makes them potentially viable for commercialization in Li-ion batteries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原位构建富镍层状氧化物阴极表面晶间碳质导电框架及保护层
富镍层状氧化物的表面化学性质不稳定会导致锂离子电池性能迅速下降,并引发严重的安全问题。在此,我们报告了一种利用自由基反应在层状氧化物阴极表面晶间原位构建保护性导电碳框架的变革性方法。通常情况下,四氯化碳(CCl4)和 N,N-二甲基甲酰胺(DMF)在 200°C 温度下发生温和反应,在 LiNi0.8Co0.1Mn0.1O2 表面晶间直接沉积无定形碳,形成致密的保护层和导电高速公路,同时消除表面残留的碱和其他杂质。随着表面相纯度、化学稳定性和电性能的提高,这种阴极表面结构大大改善了电化学性能,在 2.80-4.35 V 的电压下,0.1 C 条件下循环 100 次后的循环保持率高达 87.7%,1.0 C 条件下循环 150 次后的循环保持率高达 82.5%。值得注意的是,本合成方法为富镍层状氧化物提供了一种高效的碳质改性方法,克服了传统热碳化涂层技术的主要限制。它可能会改变对碳化热敏感的金属氧化物材料的设计模式。此外,这种简便且可扩展的制造策略使它们有可能在锂离子电池中实现商业化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
期刊最新文献
Sustainable management strategies for spent Li-ion batteries: cascade utilization, recycling, and regeneration 3D Tomography of Porous Battery Electrodes with In-situ Contrast Enhancement Degradation mechanism and direct regeneration of hard carbon anodes from spent 75 Ah sodium-ion batteries for large-scale energy storage Hydrogen-Bond Regulated Solvent Networks for Fast-Charging High-Voltage Lithium Metal Batteries Interfacial coupling constructs electronic trap regulating charge rearrangement in cathode bulk and CEI membrane for sodium ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1