Low-Voltage Gallium Oxide Memristor with Enhanced Cyclic Endurance, Stability, and Memory Window

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2025-04-03 DOI:10.1021/acsaelm.4c02238
Raufur Rahman Khan, Ohik Kwon, Avishek Das, Jacob S Eisbrenner, Cheng Wang, Meng Lu and Liang Dong*, 
{"title":"Low-Voltage Gallium Oxide Memristor with Enhanced Cyclic Endurance, Stability, and Memory Window","authors":"Raufur Rahman Khan,&nbsp;Ohik Kwon,&nbsp;Avishek Das,&nbsp;Jacob S Eisbrenner,&nbsp;Cheng Wang,&nbsp;Meng Lu and Liang Dong*,&nbsp;","doi":"10.1021/acsaelm.4c02238","DOIUrl":null,"url":null,"abstract":"<p >We present an Al/Cu/GaO<sub><i>x</i></sub>/Au memristor that combines low-voltage operation (set and reset voltages of 0.48 and −0.3 V, respectively), high cyclic endurance (&gt;13,987 cycles), a large memory window (∼4900), and stable multilevel resistance states. These outstanding properties are achieved by leveraging the synergistic interaction between a Cu-based electrochemical metallization mechanism and a GaO<sub><i>x</i></sub> intermediate layer. Comparative studies and atomistic simulations reveal that the low energy barrier for Cu diffusion into GaO<sub><i>x</i></sub> is pivotal in enhancing device performance, enabling superior functionality compared to previously reported GaO<sub><i>x</i></sub>-based memristors. This memristor supports reliable multilevel resistance programming via compliance current modulation and voltage-controlled filament rupture. Furthermore, its exceptional endurance, among the highest reported for GaO<sub><i>x</i></sub> memristors, was validated through rigorous current–voltage cycling tests and voltage pulse measurements. This work establishes the Al/Cu/GaO<sub><i>x</i></sub>/Au memristor as a promising configuration for advancing nonvolatile memory technologies, offering significant potential for high-performance, low-power storage, and neuromorphic computing solutions.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 8","pages":"3264–3273 3264–3273"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c02238","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We present an Al/Cu/GaOx/Au memristor that combines low-voltage operation (set and reset voltages of 0.48 and −0.3 V, respectively), high cyclic endurance (>13,987 cycles), a large memory window (∼4900), and stable multilevel resistance states. These outstanding properties are achieved by leveraging the synergistic interaction between a Cu-based electrochemical metallization mechanism and a GaOx intermediate layer. Comparative studies and atomistic simulations reveal that the low energy barrier for Cu diffusion into GaOx is pivotal in enhancing device performance, enabling superior functionality compared to previously reported GaOx-based memristors. This memristor supports reliable multilevel resistance programming via compliance current modulation and voltage-controlled filament rupture. Furthermore, its exceptional endurance, among the highest reported for GaOx memristors, was validated through rigorous current–voltage cycling tests and voltage pulse measurements. This work establishes the Al/Cu/GaOx/Au memristor as a promising configuration for advancing nonvolatile memory technologies, offering significant potential for high-performance, low-power storage, and neuromorphic computing solutions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有增强循环耐久性、稳定性和记忆窗口的低压氧化镓忆阻器
我们提出了一种Al/Cu/GaOx/Au记忆电阻器,它结合了低电压工作(分别为0.48和- 0.3 V的设置和复位电压),高循环耐久性(>13,987个周期),大内存窗口(~ 4900)和稳定的多电平电阻状态。这些优异的性能是通过利用cu基电化学金属化机制和高氧中间层之间的协同相互作用实现的。对比研究和原子模拟表明,Cu扩散到GaOx中的低能量势垒对于提高器件性能至关重要,与先前报道的基于GaOx的忆阻器相比,它具有更优越的功能。该忆阻器通过电流调制和电压控制灯丝破裂,支持可靠的多电平电阻编程。此外,通过严格的电流-电压循环测试和电压脉冲测量验证了其卓越的耐用性,是GaOx记忆电阻器中报道的最高耐久性之一。这项工作建立了Al/Cu/GaOx/Au记忆电阻器作为一种有前途的配置,用于推进非易失性存储技术,为高性能,低功耗存储和神经形态计算解决方案提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
期刊最新文献
Issue Publication Information Issue Editorial Masthead Nanotechnology approach for exploring the enhanced bioactivities, biochemical characterisation and phytochemistry of freshly prepared Mentha arvensis L. nanosuspensions. Realization of High-Quality Al2O3 Top-Gate Dielectric Layer for Black Phosphorus Dual-Gate Field-Effect Transistors Impact of Te Network Connectivity in Governing the Threshold Switching Dynamics of Amorphous GeTe and GeTe6 Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1