Ultra-fast one-step electrochemical synthesize of Ni-Mn-P as an active and stable electrocatalyst for green hydrogen production

IF 7.5 1区 工程技术 Q2 ENERGY & FUELS Fuel Pub Date : 2025-04-22 DOI:10.1016/j.fuel.2025.135427
Ali Talebi, Ghasem Barati Darband
{"title":"Ultra-fast one-step electrochemical synthesize of Ni-Mn-P as an active and stable electrocatalyst for green hydrogen production","authors":"Ali Talebi,&nbsp;Ghasem Barati Darband","doi":"10.1016/j.fuel.2025.135427","DOIUrl":null,"url":null,"abstract":"<div><div>The hydrogen evolution reaction (HER) is an essential electrochemical process, integral to hydrogen production via water splitting, and a clean and sustainable energy source. The efficiency of HER is fundamentally dependent on the electrocatalyst’s performance, particularly for its intrinsic activity and long-term stability. In this study, nickel–manganese–phosphide (Ni-Mn-P) nanosheets were synthesized on nickel foam (NF) substrates through a one-step electrodeposition method using the galvanostatic technique at various current densities. The electrocatalytic behavior of these materials for HER was systematically evaluated using linear sweep voltammetry (LSV), cyclic voltammetry (CV), Tafel analysis, electrochemical impedance spectroscopy (EIS), dynamic specific resistance testing, and stability measurements. The results indicated that the sample synthesized at a current density of 1 A/cm2 exhibited superior electrocatalytic activity, achieving an overpotential of 79 mV vs. the reversible hydrogen electrode (RHE) to reach a current density of 10 mA.cm<sup>−2</sup>. Additionally, the optimized sample displayed the lowest Tafel slope and minimal charge transfer resistance (R<sub>ct</sub>), as confirmed by Tafel and EIS analyses. This study demonstrates an efficient electrochemical synthesis approach for producing highly active and stable electrocatalysts, significantly improving the efficiency of hydrogen generation.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"397 ","pages":"Article 135427"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236125011524","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The hydrogen evolution reaction (HER) is an essential electrochemical process, integral to hydrogen production via water splitting, and a clean and sustainable energy source. The efficiency of HER is fundamentally dependent on the electrocatalyst’s performance, particularly for its intrinsic activity and long-term stability. In this study, nickel–manganese–phosphide (Ni-Mn-P) nanosheets were synthesized on nickel foam (NF) substrates through a one-step electrodeposition method using the galvanostatic technique at various current densities. The electrocatalytic behavior of these materials for HER was systematically evaluated using linear sweep voltammetry (LSV), cyclic voltammetry (CV), Tafel analysis, electrochemical impedance spectroscopy (EIS), dynamic specific resistance testing, and stability measurements. The results indicated that the sample synthesized at a current density of 1 A/cm2 exhibited superior electrocatalytic activity, achieving an overpotential of 79 mV vs. the reversible hydrogen electrode (RHE) to reach a current density of 10 mA.cm−2. Additionally, the optimized sample displayed the lowest Tafel slope and minimal charge transfer resistance (Rct), as confirmed by Tafel and EIS analyses. This study demonstrates an efficient electrochemical synthesis approach for producing highly active and stable electrocatalysts, significantly improving the efficiency of hydrogen generation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超快速一步电化学合成Ni-Mn-P作为活性稳定的绿色制氢电催化剂
析氢反应(HER)是一个重要的电化学过程,是水裂解制氢的重要组成部分,是一种清洁和可持续的能源。HER的效率从根本上取决于电催化剂的性能,特别是其内在活性和长期稳定性。在本研究中,利用恒流技术在不同电流密度下,通过一步电沉积法在泡沫镍(NF)衬底上合成了磷化镍锰(Ni-Mn-P)纳米片。利用线性扫描伏安法(LSV)、循环伏安法(CV)、塔菲尔分析(Tafel)、电化学阻抗谱(EIS)、动态比电阻测试和稳定性测量,系统地评估了这些材料对HER的电催化行为。结果表明,在1 a /cm2电流密度下合成的样品表现出优异的电催化活性,与可逆氢电极(RHE)相比,其过电位为79 mV,电流密度为10 mA.cm−2。此外,优化后的样品显示出最低的Tafel斜率和最小的电荷转移电阻(Rct),正如Tafel和EIS分析所证实的那样。本研究展示了一种高效的电化学合成方法,可以生产出高活性和稳定的电催化剂,显著提高了制氢效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
期刊最新文献
Performance prediction and multi-objective optimization of a CH4-fueled SOFC power/cooling system using ANN–GA: thermodynamic, economic, and environmental evaluation Magnetic biochar-assisted high-solid anaerobic digestion of chicken manure: Focusing on its mitigation mechanisms of ammonia inhibition New and efficient production of a crude Diutina rugosa lipase preparation and its use in biodiesel and biolubricant synthesis Multi-objective optimization of boiler NOx emissions and platen superheater overheating based on ensemble learning and deep reinforcement learning Hierarchical NiSx@Zn0.1Cd0.9S heterostructures with enhanced charge separation for efficient solar-to-hydrogen conversion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1