Theory of neutrino slow flavor evolution. Part I. Homogeneous medium

IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy Journal of High Energy Physics Pub Date : 2025-04-18 DOI:10.1007/JHEP04(2025)146
Damiano F. G. Fiorillo, Georg G. Raffelt
{"title":"Theory of neutrino slow flavor evolution. Part I. Homogeneous medium","authors":"Damiano F. G. Fiorillo,&nbsp;Georg G. Raffelt","doi":"10.1007/JHEP04(2025)146","DOIUrl":null,"url":null,"abstract":"<p>Dense neutrino gases can exhibit collective flavor instabilities, triggering large flavor conversions that are driven primarily by neutrino-neutrino refraction. One broadly distinguishes between fast instabilities that exist in the limit of vanishing neutrino masses, and slow ones, that require neutrino mass splittings. In a related series of papers, we have shown that fast instabilities result from the resonant growth of flavor waves, in the same way as turbulent electric fields in an unstable plasma. Here we extend this framework to slow instabilities, focusing on the simplest case of an infinitely homogeneous medium with axisymmetric neutrino distribution. The relevant length and time scales are defined by three parameters: the vacuum oscillation frequency <i>ω</i><sub><i>E</i></sub> = <i>δm</i><sup>2</sup>/2<i>E</i>, the scale of neutrino-neutrino refraction energy <span>\\( \\mu =\\sqrt{2}{G}_{\\textrm{F}}\\left({n}_{\\nu }+{n}_{\\overline{\\nu}}\\right) \\)</span>, and the ratio between lepton and particle number <span>\\( \\epsilon =\\left({n}_{\\nu }-{n}_{\\overline{\\nu}}\\right)/\\left({n}_{\\nu }+{n}_{\\overline{\\nu}}\\right) \\)</span>. We distinguish between two very different regimes: (i) For <i>ω</i><sub><i>E</i></sub> ≪ <i>μϵ</i><sup>2</sup>, instabilities occur at small spatial scales of order (<i>μϵ</i>)<sup><i>−</i>1</sup> with a time scale of order <span>\\( \\epsilon {\\omega}_E^{-1} \\)</span>. This novel branch of slow instability arises from resonant interactions with neutrinos moving along the axis of symmetry. (ii) For <i>μϵ</i><sup>2</sup> ≪ <i>ω</i><sub><i>E</i></sub> ≪ <i>μ</i>, the instability is strongly non-resonant, with typical time and length scales of order <span>\\( 1/\\sqrt{\\omega_E\\mu } \\)</span>. Unstable modes interact with all neutrino directions at once, recovering the characteristic scaling of the traditional studies of slow instabilities. In the inner regions of supernovae and neutron-star mergers, the first regime may be more likely to appear, meaning that slow instabilities in this region may have an entirely different character than usually envisaged.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)146.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP04(2025)146","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Dense neutrino gases can exhibit collective flavor instabilities, triggering large flavor conversions that are driven primarily by neutrino-neutrino refraction. One broadly distinguishes between fast instabilities that exist in the limit of vanishing neutrino masses, and slow ones, that require neutrino mass splittings. In a related series of papers, we have shown that fast instabilities result from the resonant growth of flavor waves, in the same way as turbulent electric fields in an unstable plasma. Here we extend this framework to slow instabilities, focusing on the simplest case of an infinitely homogeneous medium with axisymmetric neutrino distribution. The relevant length and time scales are defined by three parameters: the vacuum oscillation frequency ωE = δm2/2E, the scale of neutrino-neutrino refraction energy \( \mu =\sqrt{2}{G}_{\textrm{F}}\left({n}_{\nu }+{n}_{\overline{\nu}}\right) \), and the ratio between lepton and particle number \( \epsilon =\left({n}_{\nu }-{n}_{\overline{\nu}}\right)/\left({n}_{\nu }+{n}_{\overline{\nu}}\right) \). We distinguish between two very different regimes: (i) For ωEμϵ2, instabilities occur at small spatial scales of order (μϵ)1 with a time scale of order \( \epsilon {\omega}_E^{-1} \). This novel branch of slow instability arises from resonant interactions with neutrinos moving along the axis of symmetry. (ii) For μϵ2ωEμ, the instability is strongly non-resonant, with typical time and length scales of order \( 1/\sqrt{\omega_E\mu } \). Unstable modes interact with all neutrino directions at once, recovering the characteristic scaling of the traditional studies of slow instabilities. In the inner regions of supernovae and neutron-star mergers, the first regime may be more likely to appear, meaning that slow instabilities in this region may have an entirely different character than usually envisaged.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中微子慢味演化理论。第一部分均匀介质
密集的中微子气体可以表现出集体风味不稳定性,引发主要由中微子-中微子折射驱动的大风味转换。快速不稳定性存在于中微子质量消失的极限中,而慢速不稳定性则需要中微子质量分裂。在一系列相关的论文中,我们已经证明了快速不稳定性是由风味波的共振增长引起的,就像不稳定等离子体中的湍流电场一样。在这里,我们将这个框架扩展到慢不稳定性,重点关注具有轴对称中微子分布的无限均匀介质的最简单情况。相关的长度和时间尺度由三个参数定义:真空振荡频率ωE = δm2/2E、中微子-中微子折射能量尺度\( \mu =\sqrt{2}{G}_{\textrm{F}}\left({n}_{\nu }+{n}_{\overline{\nu}}\right) \)和轻子与粒子数之比\( \epsilon =\left({n}_{\nu }-{n}_{\overline{\nu}}\right)/\left({n}_{\nu }+{n}_{\overline{\nu}}\right) \)。我们区分了两种非常不同的状态:(i)对于ωE≪μϵ2,不稳定性发生在阶(μ λ)−1的小空间尺度上,时间尺度为\( \epsilon {\omega}_E^{-1} \)阶。这种慢不稳定性的新分支源于沿对称轴运动的中微子的共振相互作用。(ii)对于μϵ2≪ωE≪μ,不稳定性表现为强烈的非谐振性,具有典型的时间和长度尺度\( 1/\sqrt{\omega_E\mu } \)。不稳定模式同时与所有中微子方向相互作用,恢复了传统慢不稳定研究的特征尺度。在超新星和中子星合并的内部区域,第一种状态可能更有可能出现,这意味着该区域的缓慢不稳定性可能具有与通常设想的完全不同的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
期刊最新文献
Massless S-matrix bootstraps and RG flows Electroweak observables in neutrino-electron scattering from a muon storage ring Asymptotic higher spin symmetries. Part IV. Einstein-Yang-Mills theory Implications of a dark grand unification Laser-assisted Light-by-light scattering in Born-Infeld and axion-like particle theories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1