Tunable induced transparency in a photonically and phononically coupled hybrid magnon-optomechanical system

IF 2.9 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY The European Physical Journal Plus Pub Date : 2025-04-21 DOI:10.1140/epjp/s13360-025-06269-1
Qing-Hong Liao, Yi-ping Cheng, Shao-cong Deng, Song-yun Ouyang
{"title":"Tunable induced transparency in a photonically and phononically coupled hybrid magnon-optomechanical system","authors":"Qing-Hong Liao,&nbsp;Yi-ping Cheng,&nbsp;Shao-cong Deng,&nbsp;Song-yun Ouyang","doi":"10.1140/epjp/s13360-025-06269-1","DOIUrl":null,"url":null,"abstract":"<div><p>We theoretically investigate the induced transparency phenomenon in a hybrid double-cavities magnon-optomechanical system. A ferromagnetic material yttrium iron garnet (YIG) sphere and a mechanical resonator are placed in one of the microwave cavities, and the other is coupled to a mechanical phonon. We observe not only magnetically induced transparency (MIT) generated by magnon–photon interaction, but also magnomechanically induced transparency (MMIT) produced by nonlinear phonon–magnon interaction. It is shown that better transparency effect is obtained by appropriately adjusting the tunneling coupling strength. The effect of the interaction of the two mechanical resonators with the two microwave cavities on the output spectrum is discussed separately. In addition, we have established a new scheme to measure the mechanical phonon–photon coupling strength. We also investigated the effect of the cavity decay rate on the output field and found that better transparency can be obtained by appropriately reducing the decay rate of the cavity. We further explored the fast and slow light conversion phenomenon. These results have potential applications in quantum information processing and high precision measurements.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-025-06269-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We theoretically investigate the induced transparency phenomenon in a hybrid double-cavities magnon-optomechanical system. A ferromagnetic material yttrium iron garnet (YIG) sphere and a mechanical resonator are placed in one of the microwave cavities, and the other is coupled to a mechanical phonon. We observe not only magnetically induced transparency (MIT) generated by magnon–photon interaction, but also magnomechanically induced transparency (MMIT) produced by nonlinear phonon–magnon interaction. It is shown that better transparency effect is obtained by appropriately adjusting the tunneling coupling strength. The effect of the interaction of the two mechanical resonators with the two microwave cavities on the output spectrum is discussed separately. In addition, we have established a new scheme to measure the mechanical phonon–photon coupling strength. We also investigated the effect of the cavity decay rate on the output field and found that better transparency can be obtained by appropriately reducing the decay rate of the cavity. We further explored the fast and slow light conversion phenomenon. These results have potential applications in quantum information processing and high precision measurements.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光子和声子耦合混合磁-光机械系统的可调谐诱导透明度
从理论上研究了混合双腔磁振子-光机械系统的诱导透明现象。将铁磁材料钇铁石榴石球和机械谐振器放置在一个微波腔中,另一个与机械声子耦合。我们不仅观察到磁振子-光子相互作用产生的磁致透明(MIT),还观察到非线性声子-磁振子相互作用产生的磁致透明(MMIT)。结果表明,适当调节隧道耦合强度可获得较好的透光效果。分别讨论了两个机械谐振器与两个微波腔的相互作用对输出光谱的影响。此外,我们还建立了一种测量声子-光子机械耦合强度的新方案。我们还研究了腔体衰减率对输出场的影响,发现适当降低腔体衰减率可以获得更好的透明度。我们进一步探索了快、慢光转换现象。这些结果在量子信息处理和高精度测量方面具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The European Physical Journal Plus
The European Physical Journal Plus PHYSICS, MULTIDISCIPLINARY-
CiteScore
5.40
自引率
8.80%
发文量
1150
审稿时长
4-8 weeks
期刊介绍: The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences. The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.
期刊最新文献
Quantum autoencoder with quantum reinforcement learning for breast cancer detection Antisymmetric dark state: functional suppression in coherent three-level dynamics Characterizing coronavirus RNA via complexity-entropy curves MRI-based classification of lumbar spinal stenosis using a hybrid quantum and deep learning model Optimization of drag and lift forces via positional tuning of vertical splitters upstream and downstream around a blunt object: a study on vorticity control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1