Superhigh Magnetostriction in Non-Equilibrium Grown Fe-Ga Single-Crystals by Rapid-Directional-Solidification

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2025-04-22 DOI:10.1002/adma.202419037
Yichen Xu, Yuye Wu, Yunquan Li, Menghan Zhang, Konstantin Skokov, Oliver Gutfleisch, Yue Li, Shiteng Zhao, Keyu Yan, Xiaoxiao Wang, Jinghua Liu, Jingmin Wang, Chengbao Jiang
{"title":"Superhigh Magnetostriction in Non-Equilibrium Grown Fe-Ga Single-Crystals by Rapid-Directional-Solidification","authors":"Yichen Xu,&nbsp;Yuye Wu,&nbsp;Yunquan Li,&nbsp;Menghan Zhang,&nbsp;Konstantin Skokov,&nbsp;Oliver Gutfleisch,&nbsp;Yue Li,&nbsp;Shiteng Zhao,&nbsp;Keyu Yan,&nbsp;Xiaoxiao Wang,&nbsp;Jinghua Liu,&nbsp;Jingmin Wang,&nbsp;Chengbao Jiang","doi":"10.1002/adma.202419037","DOIUrl":null,"url":null,"abstract":"<p>The non-equilibrium microstructure characterized by Tb supersaturation within Fe-Ga single-crystals is deduced to induce a substantial enhancement in magnetostriction. However, the growth of the non-equilibrium single-crystal remains a formidable obstacle, as existing methods can only produce either non-equilibrium polycrystal or near-equilibrium single-crystal, leading to the stagnation in magnetostriction. Herein, a rapid-directional-solidification (RDS) strategy is devised to grow non-equilibrium single-crystals. The RDS is realized through achieving an ultrahigh temperature gradient of ≈10<sup>6</sup> K m<sup>−1</sup> at S-L interface front, accompanied by an ultrafast growth velocity. This results in single-crystal growth under non-equilibrium conditions with a giant cooling rate of 10<sup>2</sup>–10<sup>3</sup> K s<sup>−1</sup>, which is ≈1–2 orders of magnitude greater than the current state-of-the-art of directional-solidification methods. A non-equilibrium Fe-Ga single-crystal, featured with traces of Tb supersaturation, is successfully grown with a significantly enhanced magnetostriction of 489 ppm. This magnitude of magnetostriction sets a record in bulk Fe-Ga materials, surpassing the maximum value reported for Fe-Ga single-crystals by 60%. The advent of RDS strategy opens an avenue for fabricating non-equilibrium single-crystals with revolutionary performance, and paves the way for fabricating currently unattainable single-crystals for engineering applications.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 27","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202419037","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The non-equilibrium microstructure characterized by Tb supersaturation within Fe-Ga single-crystals is deduced to induce a substantial enhancement in magnetostriction. However, the growth of the non-equilibrium single-crystal remains a formidable obstacle, as existing methods can only produce either non-equilibrium polycrystal or near-equilibrium single-crystal, leading to the stagnation in magnetostriction. Herein, a rapid-directional-solidification (RDS) strategy is devised to grow non-equilibrium single-crystals. The RDS is realized through achieving an ultrahigh temperature gradient of ≈106 K m−1 at S-L interface front, accompanied by an ultrafast growth velocity. This results in single-crystal growth under non-equilibrium conditions with a giant cooling rate of 102–103 K s−1, which is ≈1–2 orders of magnitude greater than the current state-of-the-art of directional-solidification methods. A non-equilibrium Fe-Ga single-crystal, featured with traces of Tb supersaturation, is successfully grown with a significantly enhanced magnetostriction of 489 ppm. This magnitude of magnetostriction sets a record in bulk Fe-Ga materials, surpassing the maximum value reported for Fe-Ga single-crystals by 60%. The advent of RDS strategy opens an avenue for fabricating non-equilibrium single-crystals with revolutionary performance, and paves the way for fabricating currently unattainable single-crystals for engineering applications.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过快速定向凝固实现非平衡生长铁-镓单晶的超高磁致伸缩性
在Fe-Ga单晶中存在以Tb过饱和为特征的非平衡微观结构,从而导致磁致伸缩的显著增强。然而,非平衡单晶的生长仍然是一个巨大的障碍,因为现有的方法只能产生非平衡多晶或近平衡单晶,导致磁致伸缩停滞。本文设计了一种快速定向凝固(RDS)策略来生长非平衡单晶。通过在S-L界面前获得≈106 K m−1的超高温度梯度,并伴随着超快的生长速度,实现了RDS。这导致单晶在非平衡条件下生长,冷却速率高达102-103 K s−1,比目前最先进的定向凝固方法大约1 - 2个数量级。成功地生长出具有微量Tb过饱和的非平衡态Fe-Ga单晶,其磁致伸缩率显著提高至489 ppm。这种磁致伸缩幅度创下了块状Fe-Ga材料的记录,超过了Fe-Ga单晶报道的最大值60%。RDS策略的出现为制造具有革命性性能的非平衡单晶开辟了一条道路,为制造目前无法实现的工程应用单晶铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Opportunities of Semiconducting Oxide Nanostructures as Advanced Luminescent Materials in Photonics Liquid Metal Microrobots for Magnetically Guided Transvascular Navigation Lattice Mismatched Platinum‐Tellurium@Platinum‐Ruthenium Core@Shell Nanorods Achieve Ultrahigh Alkaline Hydrogen Electrocatalysis for Dual Practical Devices Resonant Interlayer Coupling in NbSe 2 ‐Graphite Epitaxial Moiré Superlattices Dynamic Geminal‐Atom Coordination for Highly Efficient Photo‐Fenton Catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1