Metal–Organic Framework–Derived “Ship-in-Bottle” Method: Heterogeneous Yolk@Shell Metal Oxides for Heterogeneous Sensing

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-04-21 DOI:10.1021/acsnano.5c00604
Qi Yu, Zihe Liu, Tianshuang Wang, Xueying Kou, Liupeng Zhao, Peng Sun, Geyu Lu
{"title":"Metal–Organic Framework–Derived “Ship-in-Bottle” Method: Heterogeneous Yolk@Shell Metal Oxides for Heterogeneous Sensing","authors":"Qi Yu, Zihe Liu, Tianshuang Wang, Xueying Kou, Liupeng Zhao, Peng Sun, Geyu Lu","doi":"10.1021/acsnano.5c00604","DOIUrl":null,"url":null,"abstract":"Heterogeneous yolk@shell (YS) metal oxides (MOs) with tailorable chemical compositions and spatial locations have great potential in sensors and heterogeneous catalysis. However, achieving the one-step synthesis of heterogeneous YS MOs, with a spinel oxide shell and rock salt-structured oxide yolk, remains a challenging task. Herein, we present an inhomogeneous metal–organic framework (MOF)-derived “ship-in-bottle” strategy for preparing YS NiO@NiFe<sub>2</sub>O<sub>4</sub> heterostructure nanospheres. The methodology relies on a kinetically controlled reaction via the Kirkendall effect, during which the synchronous etching of Ni-MOF and framework cation substitution take place simultaneously, forming an inhomogeneous double-shelled MOF precursor with an inner shell of Ni-MOF and an outer shell of Fe/Ni-MOF. Subsequently, adopting a thermal contraction strategy for further MOF precursor derivatization contributes to the interface separation between the inner and outer shells and then induces voids to in situ form YS heterostructure nanospheres. Accordingly, the resultant heterogeneous YS NiO@NiFe<sub>2</sub>O<sub>4</sub> is applied in gas sensors, exhibiting regional reaction and shell catalytic filter effects, which stably and selectively detect traces of <i>p</i>-xylene (6.9 ppb) in a highly discriminative manner (<i>S</i><sub><i>p-</i>xylene</sub>/<i>S</i><sub>toluene</sub> = 4.0) under high humidity (90% RH). This work paves a path for the elaborate design of different functional YS nanomaterials for use in sensors and catalysis.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"12 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c00604","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Heterogeneous yolk@shell (YS) metal oxides (MOs) with tailorable chemical compositions and spatial locations have great potential in sensors and heterogeneous catalysis. However, achieving the one-step synthesis of heterogeneous YS MOs, with a spinel oxide shell and rock salt-structured oxide yolk, remains a challenging task. Herein, we present an inhomogeneous metal–organic framework (MOF)-derived “ship-in-bottle” strategy for preparing YS NiO@NiFe2O4 heterostructure nanospheres. The methodology relies on a kinetically controlled reaction via the Kirkendall effect, during which the synchronous etching of Ni-MOF and framework cation substitution take place simultaneously, forming an inhomogeneous double-shelled MOF precursor with an inner shell of Ni-MOF and an outer shell of Fe/Ni-MOF. Subsequently, adopting a thermal contraction strategy for further MOF precursor derivatization contributes to the interface separation between the inner and outer shells and then induces voids to in situ form YS heterostructure nanospheres. Accordingly, the resultant heterogeneous YS NiO@NiFe2O4 is applied in gas sensors, exhibiting regional reaction and shell catalytic filter effects, which stably and selectively detect traces of p-xylene (6.9 ppb) in a highly discriminative manner (Sp-xylene/Stoluene = 4.0) under high humidity (90% RH). This work paves a path for the elaborate design of different functional YS nanomaterials for use in sensors and catalysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属-有机框架衍生的“瓶中船”方法:异质Yolk@Shell金属氧化物异质传感
异相yolk@shell (YS)金属氧化物(MOs)具有可定制的化学组成和空间位置,在传感器和多相催化方面具有很大的潜力。然而,如何一步合成具有尖晶石氧化壳和岩盐结构氧化蛋黄的异相YS MOs,仍然是一个具有挑战性的任务。在此,我们提出了一种非均相金属有机框架(MOF)衍生的“瓶中船”策略来制备YS NiO@NiFe2O4异质结构纳米球。该方法依赖于通过Kirkendall效应进行动力学控制的反应,在此过程中,Ni-MOF的同步蚀刻和框架阳离子取代同时发生,形成内层为Ni-MOF,外层为Fe/Ni-MOF的非均匀双壳MOF前驱体。随后,采用热收缩策略进一步进行MOF前驱体衍生化,有助于内部和外部外壳之间的界面分离,然后在原位形成YS异质结构纳米球。因此,合成的异相YS NiO@NiFe2O4应用于气体传感器,表现出区域反应和壳催化过滤效应,在高湿度(90% RH)下以高度判别的方式(sp -二甲苯/Stoluene = 4.0)稳定和选择性地检测痕量对二甲苯(6.9 ppb)。这项工作为精心设计用于传感器和催化的不同功能的YS纳米材料铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Low-Field Terahertz Quantum Tunneling in Metal–TiO2–Metal Nanogaps via Schottky Barrier Engineering High Sensitivity, All-Organic Piezoelectric Skin Enabled by a Phytic Acid-Assisted Molecular Engineering Strategy Reconfigurable Electromagnetically Unclonable Functions Based on Graphene Radio-Frequency Modulators. Layer-Dependent Transport Properties of the Magnetic Topological Material EuSn2As2 Down to a Two-Dimensional Limit Aggregation-Enhanced Piezoelectric Nanotransducers Facilitate Transgene-Free Wireless Neurostimulation under Low-Intensity Focused Ultrasound
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1